Your browser doesn't support javascript.
loading
Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna.
Nakamura, Yoji; Mori, Kazuki; Saitoh, Kenji; Oshima, Kenshiro; Mekuchi, Miyuki; Sugaya, Takuma; Shigenobu, Yuya; Ojima, Nobuhiko; Muta, Shigeru; Fujiwara, Atushi; Yasuike, Motoshige; Oohara, Ichiro; Hirakawa, Hideki; Chowdhury, Vishwajit Sur; Kobayashi, Takanori; Nakajima, Kazuhiro; Sano, Motohiko; Wada, Tokio; Tashiro, Kosuke; Ikeo, Kazuho; Hattori, Masahira; Kuhara, Satoru; Gojobori, Takashi; Inouye, Kiyoshi.
Afiliação
  • Nakamura Y; Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, Fisheries Research Agency, Kanazawa, Yokohama 236-8648, Japan. yojnakam@affrc.go.jp
Proc Natl Acad Sci U S A ; 110(27): 11061-6, 2013 Jul 02.
Article em En | MEDLINE | ID: mdl-23781100
ABSTRACT
Tunas are migratory fishes in offshore habitats and top predators with unique features. Despite their ecological importance and high market values, the open-ocean lifestyle of tuna, in which effective sensing systems such as color vision are required for capture of prey, has been poorly understood. To elucidate the genetic and evolutionary basis of optic adaptation of tuna, we determined the genome sequence of the Pacific bluefin tuna (Thunnus orientalis), using next-generation sequencing technology. A total of 26,433 protein-coding genes were predicted from 16,802 assembled scaffolds. From these, we identified five common fish visual pigment genes red-sensitive (middle/long-wavelength sensitive; M/LWS), UV-sensitive (short-wavelength sensitive 1; SWS1), blue-sensitive (SWS2), rhodopsin (RH1), and green-sensitive (RH2) opsin genes. Sequence comparison revealed that tuna's RH1 gene has an amino acid substitution that causes a short-wave shift in the absorption spectrum (i.e., blue shift). Pacific bluefin tuna has at least five RH2 paralogs, the most among studied fishes; four of the proteins encoded may be tuned to blue light at the amino acid level. Moreover, phylogenetic analysis suggested that gene conversions have occurred in each of the SWS2 and RH2 loci in a short period. Thus, Pacific bluefin tuna has undergone evolutionary changes in three genes (RH1, RH2, and SWS2), which may have contributed to detecting blue-green contrast and measuring the distance to prey in the blue-pelagic ocean. These findings provide basic information on behavioral traits of predatory fish and, thereby, could help to improve the technology to culture such fish in captivity for resource management.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pigmentos da Retina / Atum / Evolução Molecular / Proteínas de Peixes Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pigmentos da Retina / Atum / Evolução Molecular / Proteínas de Peixes Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2013 Tipo de documento: Article