Your browser doesn't support javascript.
loading
Dynamics of small, ultraviolet-excited ICN- cluster anions.
Case, Amanda S; McCoy, Anne B; Lineberger, W Carl.
Afiliação
  • Case AS; JILA and Department of Chemistry and Biochemistry, University of Colorado at Boulder , Boulder, Colorado 80309, United States.
J Phys Chem A ; 117(50): 13310-8, 2013 Dec 19.
Article em En | MEDLINE | ID: mdl-23819777
ABSTRACT
The ultraviolet (UV) photodissociation of mass-selected ICN(-)Ar(n) and ICN(-)(CO2)n clusters (n = 0-5) is studied using a secondary reflectron mass spectrometer. Relative photodissociation cross sections of bare ICN(-) show the dominance of the I(-) photoproduct from 270 to 355 nm, the entire wavelength range studied. UV excitation populates both the (2)Σ(+) state that produces I* + CN(-) and the (2)Π states that produce I(-) + CN*. While the excited (2)Π states directly produce I(-), excitation to the (2)Σ(+) state also produces some I(-) product via nonadiabatic transitions to the (2)Π(1/2) state, which produces I(-) + CN. Partial solvation of the anion by Ar atoms or CO2 molecules alters the UV-branching percentages between the various dissociation channels I* + CN(-) and I(-) + CN or I(-) + CN*. In addition, solvation by two or more Ar atoms or three or more CO2 molecules results in recombination, reforming ICN(-). Examination of the potential surfaces and transition moments in combination with the results of quantum dynamics calculations performed on the relevant excited states assist in the analysis of the experimental results.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2013 Tipo de documento: Article