Your browser doesn't support javascript.
loading
Neurological deficits caused by tissue hypoxia in neuroinflammatory disease.
Davies, Andrew L; Desai, Roshni A; Bloomfield, Peter S; McIntosh, Peter R; Chapple, Katie J; Linington, Christopher; Fairless, Richard; Diem, Ricarda; Kasti, Marianne; Murphy, Michael P; Smith, Kenneth J.
Afiliação
  • Davies AL; Department of Neuroinflammation, University College London Institute of Neurology, London, United Kingdom.
Ann Neurol ; 74(6): 815-25, 2013 Dec.
Article em En | MEDLINE | ID: mdl-24038279
ABSTRACT

OBJECTIVE:

To explore the presence and consequences of tissue hypoxia in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS).

METHODS:

EAE was induced in Dark Agouti rats by immunization with recombinant myelin oligodendrocyte glycoprotein and adjuvant. Tissue hypoxia was assessed in vivo using 2 independent

methods:

an immunohistochemical probe administered intravenously, and insertion of a physical, oxygen-sensitive probe into the spinal cord. Indirect markers of tissue hypoxia (eg, expression of hypoxia-inducible factor-1α [HIF-1α], vessel diameter, and number of vessels) were also assessed. The effects of brief (1 hour) and continued (7 days) normobaric oxygen treatment on function were evaluated in conjunction with other treatments, namely administration of a mitochondrially targeted antioxidant (MitoQ) and inhibition of inducible nitric oxide synthase (1400W).

RESULTS:

Observed neurological deficits were quantitatively, temporally, and spatially correlated with spinal white and gray matter hypoxia. The tissue expression of HIF-1α also correlated with loss of function. Spinal microvessels became enlarged during the hypoxic period, and their number increased at relapse. Notably, oxygen administration significantly restored function within 1 hour, with improvement persisting at least 1 week with continuous oxygen treatment. MitoQ and 1400W also caused a small but significant improvement.

INTERPRETATION:

We present chemical, physical, immunohistochemical, and therapeutic evidence that functional deficits caused by neuroinflammation can arise from tissue hypoxia, consistent with an energy crisis in inflamed central nervous system tissue. The neurological deficit was closely correlated with spinal white and gray matter hypoxia. This realization may indicate new avenues for therapy of neuroinflammatory diseases such as MS.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oxigênio / Doenças da Medula Espinal / Encefalomielite Autoimune Experimental / Inflamação / Hipóxia Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Oxigênio / Doenças da Medula Espinal / Encefalomielite Autoimune Experimental / Inflamação / Hipóxia Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2013 Tipo de documento: Article