Your browser doesn't support javascript.
loading
Temporal-spatial interaction between reactive oxygen species and abscisic acid regulates rapid systemic acclimation in plants.
Suzuki, Nobuhiro; Miller, Gad; Salazar, Carolina; Mondal, Hossain A; Shulaev, Elena; Cortes, Diego F; Shuman, Joel L; Luo, Xiaozhong; Shah, Jyoti; Schlauch, Karen; Shulaev, Vladimir; Mittler, Ron.
Afiliação
  • Suzuki N; Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203-5017.
Plant Cell ; 25(9): 3553-69, 2013 Sep.
Article em En | MEDLINE | ID: mdl-24038652
ABSTRACT
Being sessile organisms, plants evolved sophisticated acclimation mechanisms to cope with abiotic challenges in their environment. These are activated at the initial site of exposure to stress, as well as in systemic tissues that have not been subjected to stress (termed systemic acquired acclimation [SAA]). Although SAA is thought to play a key role in plant survival during stress, little is known about the signaling mechanisms underlying it. Here, we report that SAA in plants requires at least two different signals an autopropagating wave of reactive oxygen species (ROS) that rapidly spreads from the initial site of exposure to the entire plant and a stress-specific signal that conveys abiotic stress specificity. We further demonstrate that SAA is stress specific and that a temporal-spatial interaction between ROS and abscisic acid regulates rapid SAA to heat stress in plants. In addition, we demonstrate that the rapid ROS signal is associated with the propagation of electric signals in Arabidopsis thaliana. Our findings unravel some of the basic signaling mechanisms underlying SAA in plants and reveal that signaling events and transcriptome and metabolome reprogramming of systemic tissues in response to abiotic stress occur at a much faster rate than previously envisioned.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espécies Reativas de Oxigênio / Arabidopsis / Ácido Abscísico / Regulação da Expressão Gênica de Plantas / NADPH Oxidases / Proteínas de Arabidopsis / Aclimatação Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Espécies Reativas de Oxigênio / Arabidopsis / Ácido Abscísico / Regulação da Expressão Gênica de Plantas / NADPH Oxidases / Proteínas de Arabidopsis / Aclimatação Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2013 Tipo de documento: Article