Your browser doesn't support javascript.
loading
Impaired bile acid handling and aggravated liver injury in mice expressing a hepatocyte-specific RXRα variant lacking the DNA-binding domain.
Kosters, Astrid; Felix, Julio C; Desai, Moreshwar S; Karpen, Saul J.
Afiliação
  • Kosters A; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States.
  • Felix JC; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, United States.
  • Desai MS; Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, United States.
  • Karpen SJ; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States. Electronic address: skarpen@emory.edu.
J Hepatol ; 60(2): 362-9, 2014 Feb.
Article em En | MEDLINE | ID: mdl-24120911
BACKGROUND & AIMS: Retinoid X Receptor α (RXRα) is the principal heterodimerization partner of class II Nuclear Receptors (NRs), and a major regulator of gene expression of numerous hepatic processes, including bile acid (BA) homeostasis through multiple partners. Specific contributions of hepatic RXRα domains in heterodimer function in response to either BA load or ductular cholestasis are not fully characterized. METHODS: Wild-type (WT) mice and mice expressing a hepatocyte-specific RXRα lacking the DNA-Binding-Domain (hs-RxrαΔex4(-/-)), which retains partial ability to heterodimerize with its partners, were fed a 1% cholic acid (CA) diet for 5 days, a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet for 3 weeks, or control diet. RESULTS: Serum ALT (6.5-fold; p<0.05), AST (9.3-fold; p=0.06) and BA (2.8-fold; p<0.05) were increased in CA-fed hs-RxαΔex4(-/-) mice compared to CA-fed WT mice, but were equally induced between genotypes by DDC-feeding. CA-feeding elevated total (4.4-fold; p=0.06) and unconjugated (2.2-fold; p<0.02) bilirubin levels in hs-RxrαΔex4(-/-) mice compared to WT mice, but not in DDC-fed hs-RxrαΔex4(-/-) mice. Increased necrosis and inflammation was observed in CA-fed, but not in DDC-fed hs-RxrαΔex4(-/-) mice. Apoptotic markers DR5, CK8, CK18 RNA were increased in CA- and DDC-fed hs-RxrαΔex4(-/-) mice. Cleaved caspase 3, CK18 and p-JNK protein were elevated in CA-fed but not in DDC-fed hs-RxrαΔex4(-/-) mice. Induction of Ostß and Cyp2b10 RNA was impaired in CA-fed and DDC-fed hs-RxrαΔex4(-/-) mice. Surprisingly, DDC-fed hs-RxrαΔex4(-/-) mice showed attenuated fibrosis compared to DDC-fed WT mice. CONCLUSIONS: These two models of cholestasis identify common and injury-specific roles for RXRα heterodimers and the functional relevance of an intact RXRα-DBD in the hepatocytic adaptive cholestatic response.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácidos e Sais Biliares / Receptor X Retinoide alfa / Fígado Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácidos e Sais Biliares / Receptor X Retinoide alfa / Fígado Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article