Your browser doesn't support javascript.
loading
Hierarchically structured Ni(3)S(2)/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors.
Dai, Chao-Shuan; Chien, Pei-Yi; Lin, Jeng-Yu; Chou, Shu-Wei; Wu, Wen-Kai; Li, Ping-Hsuan; Wu, Kuan-Yi; Lin, Tsung-Wu.
Afiliação
  • Dai CS; Department of Chemistry, Tunghai University , No. 181, Sec. 3, Taichung Port Rd., Taichung City 40704, Taiwan.
ACS Appl Mater Interfaces ; 5(22): 12168-74, 2013 Nov 27.
Article em En | MEDLINE | ID: mdl-24191729
The Ni3S2 nanoparticles with the diameters ranging from 10 to 80 nm are grown on the backbone of conductive multiwalled carbon nanotubes (MWCNTs) using a glucose-assisted hydrothermal method. It is found that the Ni3S2 nanoparticles deposited on MWCNTs disassemble into smaller components after the composite electrode is activated by the consecutive cyclic voltammetry scan in a 2 M KOH solution. Therefore, the active surface area of the Ni3S2 nanoparticles is increased, which further enhances the capacitive performance of the composite electrode. Because the synergistic effect of the Ni3S2 nanoparticles and MWCNTs on the capacitive performance of the composite electrode is pronounced, the composite electrode shows a high specific capacitance of 800 F/g and great cycling stability at a current density of 3.2 A/g. To examine the capacitive performance of the composite electrode in a full-cell configuration, an asymmetric supercapacitor device was fabricated by using the composite of Ni3S2 and MWCNTs as the cathode and activated carbon as the anode. The fabricated device can be operated reversibly between 0 and 1.6 V, and obtain a high specific capacitance of 55.8 F/g at 1 A/g, which delivers a maximum energy density of 19.8 Wh/kg at a power density of 798 W/kg. Furthermore, the asymmetric supercapacitor shows great stability based on the fact that the device retains 90% of its initial capacitance after a consecutive 5000 cycles of galvanostatic charge-discharge performed at a current density of 4 A/g.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2013 Tipo de documento: Article