Your browser doesn't support javascript.
loading
Scalable fabrication of high purity diamond nanocrystals with long-spin-coherence nitrogen vacancy centers.
Trusheim, Matthew E; Li, Luozhou; Laraoui, Abdelghani; Chen, Edward H; Bakhru, Hassaram; Schröder, Tim; Gaathon, Ophir; Meriles, Carlos A; Englund, Dirk.
Afiliação
  • Trusheim ME; Department of Electrical Engineering and Computer Science, MIT , Cambridge, Massachusetts 02139, United States.
Nano Lett ; 14(1): 32-6, 2014 Jan 08.
Article em En | MEDLINE | ID: mdl-24199716
ABSTRACT
The combination of long spin coherence time and nanoscale size has made nitrogen vacancy (NV) centers in nanodiamonds the subject of much interest for quantum information and sensing applications. However, currently available high-pressure high-temperature (HPHT) nanodiamonds have a high concentration of paramagnetic impurities that limit their spin coherence time to the order of microseconds, less than 1% of that observed in bulk diamond. In this work, we use a porous metal mask and a reactive ion etching process to fabricate nanocrystals from high-purity chemical vapor deposition (CVD) diamond. We show that NV centers in these CVD nanodiamonds exhibit record-long spin coherence times in excess of 200 µs, enabling magnetic field sensitivities of 290 nT Hz(-1/2) with the spatial resolution characteristic of a 50 nm diameter probe.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article