Your browser doesn't support javascript.
loading
Revealing the properties of Mn2Au for antiferromagnetic spintronics.
Barthem, V M T S; Colin, C V; Mayaffre, H; Julien, M-H; Givord, D.
Afiliação
  • Barthem VM; Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Ilha do Fundao, 21941-972 Rio de Janeiro, Brazil.
Nat Commun ; 4: 2892, 2013.
Article em En | MEDLINE | ID: mdl-24327004
ABSTRACT
The continuous reduction in size of spintronic devices requires the development of structures, which are insensitive to parasitic external magnetic fields, while preserving the magnetoresistive signals of existing systems based on giant or tunnel magnetoresistance. This could be obtained in tunnel anisotropic magnetoresistance structures incorporating an antiferromagnetic, instead of a ferromagnetic, material. To turn this promising concept into real devices, new magnetic materials with large spin-orbit effects must be identified. Here we demonstrate that Mn2Au is not a Pauli paramagnet as hitherto believed but an antiferromagnet with Mn moments of ~4 µB. The particularly large strength of the exchange interactions leads to an extrapolated Néel temperature well above 1,000 K, so that ground-state magnetic properties are essentially preserved up to room temperature and above. Combined with the existence of a significant in-plane anisotropy, this makes Mn2Au the most promising material for antiferromagnetic spintronics identified so far.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2013 Tipo de documento: Article