Your browser doesn't support javascript.
loading
A dual role for integrin-linked kinase and ß1-integrin in modulating cardiac aging.
Nishimura, Mayuko; Kumsta, Caroline; Kaushik, Gaurav; Diop, Soda B; Ding, Yun; Bisharat-Kernizan, Jumana; Catan, Hannah; Cammarato, Anthony; Ross, Robert S; Engler, Adam J; Bodmer, Rolf; Hansen, Malene; Ocorr, Karen.
Afiliação
  • Nishimura M; Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
Aging Cell ; 13(3): 431-40, 2014 Jun.
Article em En | MEDLINE | ID: mdl-24400780
ABSTRACT
Cardiac performance decreases with age, which is a major risk factor for cardiovascular disease and mortality in the aging human population, but the molecular mechanisms underlying cardiac aging are still poorly understood. Investigating the role of integrin-linked kinase (ilk) and ß1-integrin (myospheroid, mys) in Drosophila, which colocalize near cardiomyocyte contacts and Z-bands, we find that reduced ilk or mys function prevents the typical changes of cardiac aging seen in wildtype, such as arrhythmias. In particular, the characteristic increase in cardiac arrhythmias with age is prevented in ilk and mys heterozygous flies with nearly identical genetic background, and they live longer, in line with previous findings in Caenorhabditis elegans for ilk and in Drosophila for mys. Consistent with these findings, we observed elevated ß1-integrin protein levels in old compared with young wild-type flies, and cardiac-specific overexpression of mys in young flies causes aging-like heart dysfunction. Moreover, moderate cardiac-specific knockdown of integrin-linked kinase (ILK)/integrin pathway-associated genes also prevented the decline in cardiac performance with age. In contrast, strong cardiac knockdown of ilk or ILK-associated genes can severely compromise cardiac integrity, including cardiomyocyte adhesion and overall heart function. These data suggest that ilk/mys function is necessary for establishing and maintaining normal heart structure and function, and appropriate fine-tuning of this pathway can retard the age-dependent decline in cardiac performance and extend lifespan. Thus, ILK/integrin-associated signaling emerges as an important and conserved genetic mechanism in longevity, and as a new means to improve age-dependent cardiac performance, in addition to its vital role in maintaining cardiac integrity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Serina-Treonina Quinases / Integrina beta1 / Miócitos Cardíacos Tipo de estudo: Risk_factors_studies Limite: Animals / Female / Humans / Male Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Serina-Treonina Quinases / Integrina beta1 / Miócitos Cardíacos Tipo de estudo: Risk_factors_studies Limite: Animals / Female / Humans / Male Idioma: En Ano de publicação: 2014 Tipo de documento: Article