Your browser doesn't support javascript.
loading
Mycophenolic acid mediated disruption of the intestinal epithelial tight junctions.
Qasim, Muhammad; Rahman, Hazir; Ahmed, Raees; Oellerich, Michael; Asif, Abdul R.
Afiliação
  • Qasim M; Institute of Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert Koch Strasse 40, 37075 Goettingen, Germany; Department of Microbiology, Kohat University of Science and Technology, 26000 Kohat, Pakistan.
  • Rahman H; Institute of Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert Koch Strasse 40, 37075 Goettingen, Germany; Department of Microbiology, Kohat University of Science and Technology, 26000 Kohat, Pakistan.
  • Ahmed R; Institute for Applied Science and Clinical Trials GmbH - IFS, Georg-August University, 37075 Goettingen, Germany.
  • Oellerich M; Institute of Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert Koch Strasse 40, 37075 Goettingen, Germany.
  • Asif AR; Institute of Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert Koch Strasse 40, 37075 Goettingen, Germany. Electronic address: asif@med.uni-goettingen.de.
Exp Cell Res ; 322(2): 277-89, 2014 Apr 01.
Article em En | MEDLINE | ID: mdl-24509232
ABSTRACT
Gastrointestinal toxicity is a common adverse effect of mycophenolic acid (MPA) treatment in organ transplant patients, through poorly understood mechanisms. Phosphorylation of myosin light chain 2 (MLC2) is associated with epithelial tight junction (TJ) modulation which leads to defective epithelial barrier function, and has been implicated in GI diseases. The aim of this study was to investigate whether MPA could induce epithelial barrier permeability via MLC2 regulation. Caco-2 monolayers were exposed to therapeutic concentrations of MPA, and MLC2 and myosin light chain kinase (MLCK) expression were analyzed using PCR and immunoblotting. Epithelial cell permeability was assessed by measuring transepithelial resistance (TER) and the flux of paracellular permeability marker FITC-dextran across the epithelial monolayers. MPA increased the expression of MLC2 and MLCK at both the transcriptional and translational levels. In addition, the amount of phosphorylated MLC2 was increased after MPA treatment. Confocal immunofluorescence analysis showed redistribution of TJ proteins (ZO-1 and occludin) after MPA treatment. This MPA mediated TJ disruption was not due to apoptosis or cell death. Additionally ML-7, a specific inhibitor of MLCK was able to reverse both the MPA mediated decrease in TER and the increase in FITC-dextran influx, suggesting a modulating role of MPA on epithelial barrier permeability via MLCK activity. These results suggest that MPA induced alterations in MLC2 phosphorylation and may have a role in the patho-physiology of intestinal epithelial barrier disruption and may be responsible for the adverse effects (GI toxicity) of MPA on the intestine.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Permeabilidade da Membrana Celular / Junções Íntimas / Células Epiteliais / Intestinos / Antibióticos Antineoplásicos / Ácido Micofenólico Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Permeabilidade da Membrana Celular / Junções Íntimas / Células Epiteliais / Intestinos / Antibióticos Antineoplásicos / Ácido Micofenólico Idioma: En Ano de publicação: 2014 Tipo de documento: Article