Your browser doesn't support javascript.
loading
Prediction of the peptidomes of Tigriopus californicus and Lepeophtheirus salmonis (Copepoda, Crustacea).
Christie, Andrew E.
Afiliação
  • Christie AE; Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA. Electronic address: crabman@pbrc.hawaii.edu.
Gen Comp Endocrinol ; 201: 87-106, 2014 May 15.
Article em En | MEDLINE | ID: mdl-24613138
ABSTRACT
Transcriptome mining is a powerful method for crustacean peptide discovery, especially when large sequence datasets are available and an appropriate reference is extant. Recently, a 206,041-sequence transcriptome for the copepod Calanus finmarchicus was mined for peptide-encoding transcripts, with ones for 17 families/subfamilies identified. Here, the deduced Calanus pre/preprohormones were used as templates for peptide discovery in the copepods Tigriopus californicus and Lepeophtheirus salmonis; large transcriptome shotgun assembly datasets are publicly accessible for both species. Sixty-five Tigriopus and 17 Lepeophtheirus transcripts, encompassing 22 and 13 distinct peptide families/subfamilies, respectively, were identified, with the structures of 161 and 70 unique mature peptides predicted from the deduced precursors. The identified peptides included members of the allatostatin A, allatostatin C, bursicon α, bursicon ß, CAPA/periviscerokinin/pyrokinin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, FLRFamide, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, and tachykinin-related peptide families, most of which possess novel structures, though isoforms from other copepods are known. Of particular note was the discovery of novel isoforms of adipokinetic hormone-corazonin-like peptide, allatotropin, corazonin, eclosion hormone and intocin, peptide families previously unidentified in copepods. In addition, Tigriopus precursors for two previously unknown peptide groups were discovered, one encoding GSEFLamides and the other DXXRLamides; precursors for the novel FXGGXamide family were identified from both Tigriopus and Lepeophtheirus. These data not only greatly expand the catalog of known copepod peptides, but also provide strong foundations for future functional studies of peptidergic signaling in members of this ecologically important crustacean subclass.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fragmentos de Peptídeos / Biologia Computacional / Proteoma / Crustáceos / Copépodes / Hormônios Peptídicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fragmentos de Peptídeos / Biologia Computacional / Proteoma / Crustáceos / Copépodes / Hormônios Peptídicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article