Your browser doesn't support javascript.
loading
Chelating intracellularly accumulated zinc decreased ischemic brain injury through reducing neuronal apoptotic death.
Zhao, Yongmei; Pan, Rong; Li, Sen; Luo, Yumin; Yan, Feng; Yin, Jie; Qi, Zhifeng; Yan, Ying; Ji, Xunming; Liu, Ke Jian.
Afiliação
  • Zhao Y; From the Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China (Y.Z., S.L., Y.L., F.Y., J.Y., Z.Q., Y.Y., X.J.); Beijing Geriatric Medical Research Center, Beijing, China (Y.Z., S.L., Y.L., F.Y., Z.Q., Y.Y., X.J.); Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China (Y.Z., Y.L., F.Y., J.Y., Z.Q., X.J.); Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China (Y.Z., Y.L., F.Y
Stroke ; 45(4): 1139-47, 2014 Apr.
Article em En | MEDLINE | ID: mdl-24643405
ABSTRACT
BACKGROUND AND

PURPOSE:

Zinc has been reported to possess both neurotoxic and neuroprotective capabilities. The effects of elevated intracellular zinc accumulation following transient focal cerebral ischemia remain to be fully elucidated. Here, we investigated whether removing zinc with the membrane-permeable zinc chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), would decrease the intracellular levels of zinc in the ischemic tissue, leading to reduced brain damage and improved neurological outcomes.

METHODS:

Rats were pretreated with TPEN or vehicle before or after a 90-minute middle cerebral artery occlusion. Cerebral infarct volume, neurological functions, neuronal apoptosis, poly(ADP-ribose) polymerase activity, and cytosolic labile zinc were assessed after ischemia and reperfusion.

RESULTS:

Cerebral ischemia caused a dramatic cytosolic labile zinc accumulation in the ischemic tissue, which was decreased markedly by TPEN (15 mg/kg) pretreatment. Chelating zinc lead to reduced infarct volume compared with vehicle-treated middle cerebral artery occlusion rats, accompanied by much improved neurological assessment and motor function, which were sustained for 14 days after reperfusion. We also determined that reducing zinc accumulation rescued neurons from ischemia-induced apoptotic death by reducing poly(ADP-ribose) polymerase-1 activation.

CONCLUSIONS:

Ischemia-induced high accumulation of intracellular zinc significantly contributed to ischemic brain damage through promotion of neuronal apoptotic death. Removing zinc may be an effective and novel approach to reduce ischemic brain injury.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Zinco / Isquemia Encefálica / Ataque Isquêmico Transitório / Quelantes / Apoptose / Etilenodiaminas Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Zinco / Isquemia Encefálica / Ataque Isquêmico Transitório / Quelantes / Apoptose / Etilenodiaminas Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article