Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis.
Cardiovasc Res
; 103(1): 100-10, 2014 Jul 01.
Article
em En
| MEDLINE
| ID: mdl-24675724
AIM: MicroRNAs (miRNAs) play key roles in inflammatory responses of macrophages. However, the function of miRNAs in macrophage-derived foam cell formation is unclear. Here, we investigated the role of miRNAs in macrophage-derived foam cell formation and atherosclerotic development. METHODS AND RESULTS: Using quantitative reverse transcription-PCR (qRT-PCR), we found that the level of miR-155 expression was increased significantly in both plasma and macrophages from atherosclerosis (ApoE(-/-)) mice. We identified that oxidized low density lipoprotein (oxLDL) induced the expression and release of miR-155 in macrophages, and that miR-155 was required to mediate oxLDL-induced lipid uptake and reactive oxygen species (ROS) production of macrophages. Furthermore, ectopic overexpression and knockdown experiments identified that HMG box-transcription protein1 (HBP1) is a novel target of miR-155. Knockdown of HBP1 enhanced lipid uptake and ROS production in oxLDL-stimulated macrophages, and overexpression of HBP1 repressed these effects. Furthermore, bioinformatics analysis identified three YY1 binding sites in the promoter region of pri-miR-155 and verified YY1 binding directly to its promoter region. Detailed analysis showed that the YY1/HDAC2/4 complex negatively regulated the expression of miR-155 to suppress oxLDL-induced foam cell formation. Importantly, inhibition of miR-155 by a systemically delivered antagomiR-155 decreased clearly lipid-loading in macrophages and reduced atherosclerotic plaques in ApoE(-/-) mice. Moreover, we observed that the level of miR-155 expression was up-regulated in CD14(+) monocytes from patients with coronary heart disease. CONCLUSION: Our findings reveal a new regulatory pathway of YY1/HDACs/miR-155/HBP1 in macrophage-derived foam cell formation during early atherogenesis and suggest that miR-155 is a potential therapeutic target for atherosclerosis.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Proteínas Repressoras
/
Proteínas de Grupo de Alta Mobilidade
/
MicroRNAs
/
Aterosclerose
/
Células Espumosas
Tipo de estudo:
Observational_studies
/
Prognostic_studies
Limite:
Animals
/
Humans
/
Male
Idioma:
En
Ano de publicação:
2014
Tipo de documento:
Article