Your browser doesn't support javascript.
loading
Fabrication and characterization of monolithically integrated microchannel plates based on amorphous silicon.
Franco, Andrea; Geissbühler, Jonas; Wyrsch, Nicolas; Ballif, Christophe.
Afiliação
  • Franco A; Ecole Polytechnique Fédérale de Lausanne (EPFL), Photovoltaics and thin-film electronics laboratory (PV-Lab), Rue de la Maladière 71B, CH-2002 Neuchâtel, Switzerland.
  • Geissbühler J; Ecole Polytechnique Fédérale de Lausanne (EPFL), Photovoltaics and thin-film electronics laboratory (PV-Lab), Rue de la Maladière 71B, CH-2002 Neuchâtel, Switzerland.
  • Wyrsch N; Ecole Polytechnique Fédérale de Lausanne (EPFL), Photovoltaics and thin-film electronics laboratory (PV-Lab), Rue de la Maladière 71B, CH-2002 Neuchâtel, Switzerland.
  • Ballif C; Ecole Polytechnique Fédérale de Lausanne (EPFL), Photovoltaics and thin-film electronics laboratory (PV-Lab), Rue de la Maladière 71B, CH-2002 Neuchâtel, Switzerland.
Sci Rep ; 4: 4597, 2014 Apr 04.
Article em En | MEDLINE | ID: mdl-24698955
ABSTRACT
Microchannel plates are vacuum-based electron multipliers for particle--in particular, photon--detection, with applications ranging from image intensifiers to single-photon detectors. Their key strengths are large signal amplification, large active area, micrometric spatial resolution and picosecond temporal resolution. Here, we present the first microchannel plate made of hydrogenated amorphous silicon (a-SiH) instead of lead glass. The breakthrough lies in the possibility of realizing amorphous silicon-based microchannel plates (AMCPs) on any kind of substrate. This achievement is based on mastering the deposition of an ultra-thick (80-120 µm) stress-controlled a-SiH layer from the gas phase at temperatures of about 200 °C and micromachining the channels by dry etching. We fabricated AMCPs that are vertically integrated on metallic anodes of test structures, proving the feasibility of monolithic integration of, for instance, AMCPs on application-specific integrated circuits for signal processing. We show an electron multiplication factor exceeding 30 for an aspect ratio, namely channel length over aperture, of 12.51. This result was achieved for input photoelectron currents up to 100 pA, in the continuous illumination regime, which provides a first evidence of the a-SiH effectiveness in replenishing the electrons dispensed in the multiplication process.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article