Your browser doesn't support javascript.
loading
Beyond the temporal pole: limbic memory circuit in the semantic variant of primary progressive aphasia.
Tan, Rachel H; Wong, Stephanie; Kril, Jillian J; Piguet, Olivier; Hornberger, Michael; Hodges, John R; Halliday, Glenda M.
Afiliação
  • Tan RH; 1 Neuroscience Research Australia, Barker Street, Randwick, Sydney, 2031, Australia2 School of Medical Sciences, University of New South Wales, Sydney, 2031, Australia.
  • Wong S; 1 Neuroscience Research Australia, Barker Street, Randwick, Sydney, 2031, Australia.
  • Kril JJ; 3 Disciplines of Pathology and Medicine, Sydney Medical School, The University of Sydney, Sydney, 2006, Australia.
  • Piguet O; 1 Neuroscience Research Australia, Barker Street, Randwick, Sydney, 2031, Australia2 School of Medical Sciences, University of New South Wales, Sydney, 2031, Australia4 ARC Centre of Excellence in Cognition and its Disorders, Sydney, 2109, Australia.
  • Hornberger M; 1 Neuroscience Research Australia, Barker Street, Randwick, Sydney, 2031, Australia2 School of Medical Sciences, University of New South Wales, Sydney, 2031, Australia4 ARC Centre of Excellence in Cognition and its Disorders, Sydney, 2109, Australia.
  • Hodges JR; 1 Neuroscience Research Australia, Barker Street, Randwick, Sydney, 2031, Australia2 School of Medical Sciences, University of New South Wales, Sydney, 2031, Australia4 ARC Centre of Excellence in Cognition and its Disorders, Sydney, 2109, Australia.
  • Halliday GM; 1 Neuroscience Research Australia, Barker Street, Randwick, Sydney, 2031, Australia2 School of Medical Sciences, University of New South Wales, Sydney, 2031, Australia g.halliday@neura.edu.au.
Brain ; 137(Pt 7): 2065-76, 2014 Jul.
Article em En | MEDLINE | ID: mdl-24844729
ABSTRACT
Despite accruing evidence for relative preservation of episodic memory in the semantic variant of primary progressive aphasia (previously semantic dementia), the neural basis for this remains unclear, particularly in light of their well-established hippocampal involvement. We recently investigated the Papez network of memory structures across pathological subtypes of behavioural variant frontotemporal dementia and demonstrated severe degeneration of all relay nodes, with the anterior thalamus in particular emerging as crucial for intact episodic memory. The present study investigated the status of key components of Papez circuit (hippocampus, mammillary bodies, anterior thalamus, cingulate cortex) and anterior temporal cortex using volumetric and quantitative cell counting methods in pathologically-confirmed cases with semantic variant of primary progressive aphasia (n = 8; 61-83 years; three males), behavioural variant frontotemporal dementia with TDP pathology (n = 9; 53-82 years; six males) and healthy controls (n = 8, 50-86 years; four males). Behavioural variant frontotemporal dementia cases with TDP pathology were selected because of the association between the semantic variant of primary progressive aphasia and TDP pathology. Our findings revealed that the semantic variant of primary progressive aphasia and behavioural variant frontotemporal dementia show similar degrees of anterior thalamic atrophy. The mammillary bodies and hippocampal body and tail were preserved in the semantic variant of primary progressive aphasia but were significantly atrophic in behavioural variant frontotemporal dementia. Importantly, atrophy in the anterior thalamus and mild progressive atrophy in the body of the hippocampus emerged as the main memory circuit regions correlated with increasing dementia severity in the semantic variant of primary progressive aphasia. Quantitation of neuronal populations in the cingulate cortices confirmed the selective loss of anterior cingulate von Economo neurons in behavioural variant frontotemporal dementia. We also show that by end-stage these neurons selectively degenerate in the semantic variant of primary progressive aphasia with preservation of neurons in the posterior cingulate cortex. Overall, our findings demonstrate for the first time, severe atrophy, although not necessarily neuronal loss, across all relay nodes of Papez circuit with the exception of the mammillary bodies and hippocampal body and tail in the semantic variant of primary progressive aphasia. Despite the longer disease course in the semantic variant of primary progressive aphasia compared with behavioural variant frontotemporal dementia, we suggest here that the neural preservation of crucial memory relays (hippocampal→mammillary bodies and posterior cingulate→hippocampus) likely reflects the conservation of specific episodic memory components observed in most patients with semantic variant of primary progressive aphasia.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Semântica / Lobo Temporal / Afasia Primária Progressiva / Sistema Límbico / Transtornos da Memória Limite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Semântica / Lobo Temporal / Afasia Primária Progressiva / Sistema Límbico / Transtornos da Memória Limite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2014 Tipo de documento: Article