Your browser doesn't support javascript.
loading
Perfusion decellularization of whole organs.
Guyette, Jacques P; Gilpin, Sarah E; Charest, Jonathan M; Tapias, Luis F; Ren, Xi; Ott, Harald C.
Afiliação
  • Guyette JP; 1] Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Harvard Medical School, Boston, Massachusetts, USA. [3].
  • Gilpin SE; 1] Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Harvard Medical School, Boston, Massachusetts, USA. [3].
  • Charest JM; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
  • Tapias LF; 1] Harvard Medical School, Boston, Massachusetts, USA. [2] Department of Surgery, Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
  • Ren X; 1] Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Harvard Medical School, Boston, Massachusetts, USA.
  • Ott HC; 1] Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Harvard Medical School, Boston, Massachusetts, USA. [3] Department of Surgery, Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA. [4] Harvard Stem Cell Institut
Nat Protoc ; 9(6): 1451-68, 2014.
Article em En | MEDLINE | ID: mdl-24874812
The native extracellular matrix (ECM) outlines the architecture of organs and tissues. It provides a unique niche of composition and form, which serves as a foundational scaffold that supports organ-specific cell types and enables normal organ function. Here we describe a standard process for pressure-controlled perfusion decellularization of whole organs for generating acellular 3D scaffolds with preserved ECM protein content, architecture and perfusable vascular conduits. By applying antegrade perfusion of detergents and subsequent washes to arterial vasculature at low physiological pressures, successful decellularization of complex organs (i.e., hearts, lungs and kidneys) can be performed. By using appropriate modifications, pressure-controlled perfusion decellularization can be achieved in small-animal experimental models (rat organs, 4-5 d) and scaled to clinically relevant models (porcine and human organs, 12-14 d). Combining the unique structural and biochemical properties of native acellular scaffolds with subsequent recellularization techniques offers a novel platform for organ engineering and regeneration, for experimentation ex vivo and potential clinical application in vivo.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Perfusão / Pressão / Vísceras / Proteínas da Matriz Extracelular / Engenharia Tecidual / Matriz Extracelular Limite: Animals / Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Perfusão / Pressão / Vísceras / Proteínas da Matriz Extracelular / Engenharia Tecidual / Matriz Extracelular Limite: Animals / Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article