Your browser doesn't support javascript.
loading
Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control-Part I: Non-Axisymmetrical Flow in Centrifugal Compressor.
Yang, Mingyang; Zheng, Xinqian; Zhang, Yangjun; Bamba, Takahiro; Tamaki, Hideaki; Huenteler, Joern; Li, Zhigang.
Afiliação
  • Zheng X; e-mail: zhengxq@tsinghua.edu.cn.
  • Zhang Y; State Key Laboratory of Automotive Safety and Energy Tsinghua University , Beijing 100084 , China.
  • Tamaki H; Turbo Machinery and Engine Technology Department, IHI Corporation, Yokohama, 235-8501, Japan.
  • Huenteler J; RWTH Aachen University, Aachen 52056, Germany.
  • Li Z; Beijing Special Vehicle Institute, Beijing 100072 , China.
J Turbomach ; 135(2): 0210061-210069, 2013 Mar.
Article em En | MEDLINE | ID: mdl-24891757
This is Part I of a two-part paper documenting the development of a novel asymmetric flow control method to improve the stability of a high-pressure-ratio turbocharger centrifugal compressor. Part I focuses on the nonaxisymmetrical flow in a centrifugal compressor induced by the nonaxisymmetrical geometry of the volute while Part II describes the development of an asymmetric flow control method to avoid the stall on the basis of the characteristic of nonaxisymmetrical flow. To understand the asymmetries, experimental measurements and corresponding numerical simulation were carried out. The static pressure was measured by probes at different circumferential and stream-wise positions to gain insights about the asymmetries. The experimental results show that there is an evident nonaxisymmetrical flow pattern throughout the compressor due to the asymmetric geometry of the overhung volute. The static pressure field in the diffuser is distorted at approximately 90 deg in the rotational direction of the volute tongue throughout the diffuser. The magnitude of this distortion slightly varies with the rotational speed. The magnitude of the static pressure distortion in the impeller is a function of the rotational speed. There is a significant phase shift between the static pressure distributions at the leading edge of the splitter blades and the impeller outlet. The numerical steady state simulation neglects the aforementioned unsteady effects found in the experiments and cannot predict the phase shift, however, a detailed asymmetric flow field structure is obviously obtained.

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2013 Tipo de documento: Article