Your browser doesn't support javascript.
loading
MicroRNA-206 overexpression promotes apoptosis, induces cell cycle arrest and inhibits the migration of human hepatocellular carcinoma HepG2 cells.
Liu, Weiwei; Xu, Chuanming; Wan, Huifang; Liu, Chunju; Wen, Can; Lu, Hongfei; Wan, Fusheng.
Afiliação
  • Liu W; Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.
  • Xu C; Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.
  • Wan H; Medical Experiment Education Department of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.
  • Liu C; Department of Clinical Laboratory, The Affiliated Hospital of Jiangxi College of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China.
  • Wen C; Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.
  • Lu H; Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.
  • Wan F; Department of Biochemistry and Molecular Biology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.
Int J Mol Med ; 34(2): 420-8, 2014 Aug.
Article em En | MEDLINE | ID: mdl-24919811
MicroRNA-206 (miR-206) is known to regulate cell proliferation and migration and is involved in various types of cancer. However, the role of miR-206 in human hepatocellular carcinoma (HHC) has not been previously reported. In the present study, the expression of Notch3 in HCC and adjacent non-neoplastic tissue was immunohistochemically assessed on formalin-fixed, paraffin-embedded sections. miR-206 mimics were transiently transfected into HepG2 cells using Lipofectamine™ 2000. Subsequently, we evaluated the role of miR-206 in cell proliferation, apoptosis, cell cycle arrest and migration by MTS assay, Hoechst 33342 staining, Annexin V-FITC/PI assay, flow cytometry and wound healing assay. Using quantitative reverse transcription polymerase chain reaction (qRT­PCR) and western blot analysis, we detected the expression of Notch3, Bax, Bcl-2, Hes1, p57 and matrix metalloproteinase (MMP)-9 at the mRNA and protein level, respectively. In addition, we measured the expression of miR-206 at the mRNA level and that of caspase-3 at the protein level. After miR-206 was upregulated in HepG2 cells, Notch3, Hes1, Bcl-2 and MMP-9 were downregulated both at the mRNA and protein level, whereas p57 and Bax were upregulated. Cleaved caspase-3 protein expression was also markedly increased. Cell proliferation was significantly attenuated and apoptosis was markedly increased. Furthermore, miR-206 overexpression induced cell cycle arrest and inhibited the migration of HepG2 cells. Taken together, our results uggest that miR-206 is a potential regulator of apoptosis, the cell cycle and migration in HepG2 cells and that it has the potential for use in the targeted therapy of HCC and is a novel tumor suppressor.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carcinoma Hepatocelular / MicroRNAs / Neoplasias Hepáticas / Proteínas de Neoplasias Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carcinoma Hepatocelular / MicroRNAs / Neoplasias Hepáticas / Proteínas de Neoplasias Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article