Your browser doesn't support javascript.
loading
Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models.
Barmada, Sami J; Serio, Andrea; Arjun, Arpana; Bilican, Bilada; Daub, Aaron; Ando, D Michael; Tsvetkov, Andrey; Pleiss, Michael; Li, Xingli; Peisach, Daniel; Shaw, Christopher; Chandran, Siddharthan; Finkbeiner, Steven.
Afiliação
  • Barmada SJ; 1] Gladstone Institute of Neurologic Disease, San Francisco, California, USA. [2] Department of Neurology, University of California-San Francisco Medical Center, San Francisco, California, USA. [3] Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
  • Serio A; 1] Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, Scotland, UK. [2] Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK. [3] Departments of Materials and Bioengineering, and Institute for Biomedica
  • Arjun A; Gladstone Institute of Neurologic Disease, San Francisco, California, USA.
  • Bilican B; 1] Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, Scotland, UK. [2] Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK.
  • Daub A; Gladstone Institute of Neurologic Disease, San Francisco, California, USA.
  • Ando DM; 1] Gladstone Institute of Neurologic Disease, San Francisco, California, USA. [2] Biomedical Sciences Graduate Program, University of California-San Francisco, San Francisco, California, USA.
  • Tsvetkov A; 1] Gladstone Institute of Neurologic Disease, San Francisco, California, USA. [2] Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas, USA.
  • Pleiss M; Keck Program in Brain Cell Engineering, Gladstone Institutes, San Francisco, California, USA.
  • Li X; Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
  • Peisach D; Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.
  • Shaw C; Institute of Psychiatry, King's College London, London, UK.
  • Chandran S; 1] Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, Scotland, UK. [2] Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK.
  • Finkbeiner S; 1] Gladstone Institute of Neurologic Disease, San Francisco, California, USA. [2] Department of Neurology, University of California-San Francisco Medical Center, San Francisco, California, USA. [3] Biomedical Sciences Graduate Program, University of California-San Francisco, San Francisco, Californi
Nat Chem Biol ; 10(8): 677-85, 2014 Aug.
Article em En | MEDLINE | ID: mdl-24974230
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have distinct clinical features but a common pathology--cytoplasmic inclusions rich in transactive response element DNA-binding protein of 43 kDa (TDP43). Rare TDP43 mutations cause ALS or FTD, but abnormal TDP43 levels and localization may cause disease even if TDP43 lacks a mutation. Here we show that individual neurons vary in their ability to clear TDP43 and are exquisitely sensitive to TDP43 levels. To measure TDP43 clearance, we developed and validated a single-cell optical method that overcomes the confounding effects of aggregation and toxicity and discovered that pathogenic mutations shorten TDP43 half-life. New compounds that stimulate autophagy improved TDP43 clearance and localization and enhanced survival in primary murine neurons and in human stem cell-derived neurons and astrocytes harboring mutant TDP43. These findings indicate that the levels and localization of TDP43 critically determine neurotoxicity and show that autophagy induction mitigates neurodegeneration by acting directly on TDP43 clearance.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Autofagia / Proteínas de Ligação a DNA / Esclerose Lateral Amiotrófica / Neurônios Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Autofagia / Proteínas de Ligação a DNA / Esclerose Lateral Amiotrófica / Neurônios Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article