Your browser doesn't support javascript.
loading
Discovering rare behaviours in stochastic differential equations using decision procedures: applications to a minimal cell cycle model.
Ghosh, Arup Kumar; Hussain, Faraz; Jha, Susmit; Langmead, Christopher J; Jha, Sumit Kumar.
Afiliação
  • Ghosh AK; Computer Science Department, University of Central Florida, Orlando FL 32816, USA.
  • Hussain F; Computer Science Department, University of Central Florida, Orlando FL 32816, USA.
  • Jha S; Strategic CAD Labs, Intel, Portland, OR 97124, USA.
  • Langmead CJ; Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh PA 15213, USA.
  • Jha SK; Computer Science Department, University of Central Florida, Orlando FL 32816, USA.
Int J Bioinform Res Appl ; 10(4-5): 540-58, 2014.
Article em En | MEDLINE | ID: mdl-24989867
Stochastic Differential Equation (SDE) models are used to describe the dynamics of complex systems with inherent randomness. The primary purpose of these models is to study rare but interesting or important behaviours, such as the formation of a tumour. Stochastic simulations are the most common means for estimating (or bounding) the probability of rare behaviours, but the cost of simulations increases with the rarity of events. To address this problem, we introduce a new algorithm specifically designed to quantify the likelihood of rare behaviours in SDE models. Our approach relies on temporal logics for specifying rare behaviours of interest, and on the ability of bit-vector decision procedures to reason exhaustively about fixed-precision arithmetic. We apply our algorithm to a minimal parameterised model of the cell cycle, and take Brownian noise into account while investigating the likelihood of irregularities in cell size and time between cell divisions.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ciclo Celular / Biologia Computacional / Tomada de Decisões Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ciclo Celular / Biologia Computacional / Tomada de Decisões Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2014 Tipo de documento: Article