Your browser doesn't support javascript.
loading
Brain MR image segmentation with spatial constrained K-mean algorithm and dual-tree complex wavelet transform.
Zhang, Jingdan; Jiang, Wuhan; Wang, Ruichun; Wang, Le.
Afiliação
  • Zhang J; Department of Electronics and Communication, Shenzhen Institute of Information Technology, Shenzhen, 518172, China, zhangjd358@163.com.
J Med Syst ; 38(9): 93, 2014 Sep.
Article em En | MEDLINE | ID: mdl-24994513
In brain MR images, the noise and low-contrast significantly deteriorate the segmentation results. In this paper, we propose an automatic unsupervised segmentation method integrating dual-tree complex wavelet transform (DT-CWT) with K-mean algorithm for brain MR image. Firstly, a multi-dimensional feature vector is constructed based on the intensity, the low-frequency subband of DT-CWT and spatial position information. Then, a spatial constrained K-mean algorithm is presented as the segmentation system. The proposed method is validated by extensive experiments using both simulated and real T1-weighted MR images, and compared with the state-of-the-art algorithms.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Imageamento por Ressonância Magnética / Aumento da Imagem / Análise de Ondaletas / Neuroimagem Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Imageamento por Ressonância Magnética / Aumento da Imagem / Análise de Ondaletas / Neuroimagem Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article