Your browser doesn't support javascript.
loading
AUF1 p45 promotes West Nile virus replication by an RNA chaperone activity that supports cyclization of the viral genome.
Friedrich, Susann; Schmidt, Tobias; Geissler, René; Lilie, Hauke; Chabierski, Stefan; Ulbert, Sebastian; Liebert, Uwe G; Golbik, Ralph P; Behrens, Sven-Erik.
Afiliação
  • Friedrich S; Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, Halle, Germany.
  • Schmidt T; Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, Halle, Germany.
  • Geissler R; Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, Halle, Germany.
  • Lilie H; Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, Halle, Germany.
  • Chabierski S; Vaccine Technologies Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
  • Ulbert S; Vaccine Technologies Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
  • Liebert UG; Institute of Virology, Leipzig University, Leipzig, Germany.
  • Golbik RP; Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, Halle, Germany.
  • Behrens SE; Institute of Biochemistry and Biotechnology (NFI), Martin Luther University Halle-Wittenberg, Halle, Germany sven.behrens@biochemtech.uni-halle.de.
J Virol ; 88(19): 11586-99, 2014 Oct.
Article em En | MEDLINE | ID: mdl-25078689
UNLABELLED: A central aspect of current virology is to define the function of cellular proteins (host factors) that support the viral multiplication process. This study aimed at characterizing cellular proteins that assist the RNA replication process of the prevalent human pathogen West Nile virus (WNV). Using in vitro and cell-based approaches, we defined the p45 isoform of AU-rich element RNA-binding protein 1 (AUF1) as a host factor that enables efficient WNV replication. It was demonstrated that AUF1 p45 has an RNA chaperone activity, which aids the structural rearrangement and cyclization of the WNV RNA that is required by the viral replicase to initiate RNA replication. The obtained data suggest the RNA chaperone activity of AUF1 p45 is an important determinant of the WNV life cycle. IMPORTANCE: In this study, we identified a cellular protein, AUF1 (also known as heterogeneous ribonucleoprotein D [hnRNPD]), acting as a helper (host factor) of the multiplication process of the important human pathogen West Nile virus. Several different variants of AUF1 exist in the cell, and one variant, AUF1 p45, was shown to support viral replication most significantly. Interestingly, we obtained a set of experimental data indicating that a main function of AUF1 p45 is to modify and thus prepare the West Nile virus genome in such a way that the viral enzyme that generates progeny genomes is empowered to do this considerably more efficiently than in the absence of the host factor. The capability of AUF1 p45 to rearrange the West Nile virus genome was thus identified to be an important aspect of a West Nile virus infection.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vírus do Nilo Ocidental / RNA Viral / Regulação Viral da Expressão Gênica / Genoma Viral / Chaperonas Moleculares / Ribonucleoproteínas Nucleares Heterogêneas Grupo D Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vírus do Nilo Ocidental / RNA Viral / Regulação Viral da Expressão Gênica / Genoma Viral / Chaperonas Moleculares / Ribonucleoproteínas Nucleares Heterogêneas Grupo D Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article