Your browser doesn't support javascript.
loading
Characterization of spin-orbit interactions of GaAs heavy holes using a quantum point contact.
Nichele, Fabrizio; Chesi, Stefano; Hennel, Szymon; Wittmann, Angela; Gerl, Christian; Wegscheider, Werner; Loss, Daniel; Ihn, Thomas; Ensslin, Klaus.
Afiliação
  • Nichele F; Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland.
  • Chesi S; CEMS, RIKEN, Wako, Saitama 351-0198, Japan and Beijing Computational Science Research Center, Beijing 100084, China.
  • Hennel S; Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland.
  • Wittmann A; Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland.
  • Gerl C; Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
  • Wegscheider W; Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland.
  • Loss D; CEMS, RIKEN, Wako, Saitama 351-0198, Japan and Department of Physics, University of Basel, 4056 Basel, Switzerland.
  • Ihn T; Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland.
  • Ensslin K; Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland.
Phys Rev Lett ; 113(4): 046801, 2014 Jul 25.
Article em En | MEDLINE | ID: mdl-25105641
We present transport experiments performed in high-quality quantum point contacts embedded in a GaAs two-dimensional hole gas. The strong spin-orbit interaction results in peculiar transport phenomena, including the previously observed anisotropic Zeeman splitting and level-dependent effective g factors. Here we find additional effects, namely, the crossing and the anticrossing of spin-split levels depending on subband index and magnetic field direction. Our experimental observations are reconciled in a heavy-hole effective spin-orbit Hamiltonian where cubic- and quadratic-in-momentum terms appear. The spin-orbit components, being of great importance for quantum computing applications, are characterized in terms of magnitude and spin structure. In light of our results, we explain the level-dependent effective g factor in an in-plane field. Through a tilted magnetic field analysis, we show that the quantum point contact out-of-plane g factor saturates around the predicted 7.2 bulk value.
Buscar no Google
Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2014 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2014 Tipo de documento: Article