Your browser doesn't support javascript.
loading
Lysophospholipid acyltransferases and eicosanoid biosynthesis in zebrafish myeloid cells.
Zarini, Simona; Hankin, Joseph A; Murphy, Robert C; Gijón, Miguel A.
Afiliação
  • Zarini S; Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, United States.
  • Hankin JA; Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, United States.
  • Murphy RC; Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, United States.
  • Gijón MA; Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, United States. Electronic address: miguel.gijon@ucdenver.edu.
Prostaglandins Other Lipid Mediat ; 113-115: 52-61, 2014 Oct.
Article em En | MEDLINE | ID: mdl-25175316
ABSTRACT
Eicosanoids derived from the enzymatic oxidation of arachidonic acid play important roles in a large number of physiological and pathological processes in humans. Many animal and cellular models have been used to investigate the intricate mechanisms regulating their biosynthesis and actions. Zebrafish is a widely used model to study the embryonic development of vertebrates. It expresses homologs of the key enzymes involved in eicosanoid production, and eicosanoids have been detected in extracts from adult or embryonic fish. In this study we prepared cell suspensions from kidney marrow, the main hematopoietic organ in fish. Upon stimulation with calcium ionophore, these cells produced eicosanoids including PGE2, LTB4, 5-HETE and, most abundantly, 12-HETE. They also produced small amounts of LTB5 derived from eicosapentaenoic acid. These eicosanoids were also produced in kidney marrow cells stimulated with ATP, and this production was greatly enhanced by preincubation with thimerosal, an inhibitor of arachidonate reacylation into phospholipids. Microsomes from these cells exhibited acyltransferase activities consistent with expression of MBOAT5/LPCAT3 and MBOAT7/LPIAT1, the main arachidonoyl-CoAlysophospholipid acyltransferases. In summary, this work introduces a new cellular model to study the regulation of eicosanoid production through a phospholipid deacylation-reacylation cycle from a well-established, versatile vertebrate model species.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Eicosanoides / Células Mieloides / 1-Acilglicerofosfocolina O-Aciltransferase Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Eicosanoides / Células Mieloides / 1-Acilglicerofosfocolina O-Aciltransferase Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article