Your browser doesn't support javascript.
loading
Probing scale interaction in brain dynamics through synchronization.
Barardi, Alessandro; Malagarriga, Daniel; Sancristobal, Belén; Garcia-Ojalvo, Jordi; Pons, Antonio J.
Afiliação
  • Barardi A; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Dr. Aiguader 88, 08003 Barcelona, Spain Departament de Fìsica i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Edifici Gaia, Rambla Sant Nebridi 22, 08222 Terrassa, Spain.
  • Malagarriga D; Departament de Fìsica i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Edifici Gaia, Rambla Sant Nebridi 22, 08222 Terrassa, Spain Neuroheuristic Research Group, Faculty of Business and Economics, University of Lausanne, 1015 Lausanne, Switzerland.
  • Sancristobal B; Center for Genomic Regulation, Barcelona Biomedical Research Park (PRBB), Dr. Aiguader 88, 08003 Barcelona, Spain.
  • Garcia-Ojalvo J; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Dr. Aiguader 88, 08003 Barcelona, Spain jordi.g.ojalvo@upf.edu.
  • Pons AJ; Departament de Fìsica i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Edifici Gaia, Rambla Sant Nebridi 22, 08222 Terrassa, Spain.
Philos Trans R Soc Lond B Biol Sci ; 369(1653)2014 Oct 05.
Article em En | MEDLINE | ID: mdl-25180311
ABSTRACT
The mammalian brain operates in multiple spatial scales simultaneously, ranging from the microscopic scale of single neurons through the mesoscopic scale of cortical columns, to the macroscopic scale of brain areas. These levels of description are associated with distinct temporal scales, ranging from milliseconds in the case of neurons to tens of seconds in the case of brain areas. Here, we examine theoretically how these spatial and temporal scales interact in the functioning brain, by considering the coupled behaviour of two mesoscopic neural masses (NMs) that communicate with each other through a microscopic neuronal network (NN). We use the synchronization between the two NM models as a tool to probe the interaction between the mesoscopic scales of those neural populations and the microscopic scale of the mediating NN. The two NM oscillators are taken to operate in a low-frequency regime with different peak frequencies (and distinct dynamical behaviour). The microscopic neuronal population, in turn, is described by a network of several thousand excitatory and inhibitory spiking neurons operating in a synchronous irregular regime, in which the individual neurons fire very sparsely but collectively give rise to a well-defined rhythm in the gamma range. Our results show that this NN, which operates at a fast temporal scale, is indeed sufficient to mediate coupling between the two mesoscopic oscillators, which evolve dynamically at a slower scale. We also establish how this synchronization depends on the topological properties of the microscopic NN, on its size and on its oscillation frequency.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Transmissão Sináptica / Sincronização Cortical / Modelos Neurológicos / Rede Nervosa Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Transmissão Sináptica / Sincronização Cortical / Modelos Neurológicos / Rede Nervosa Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2014 Tipo de documento: Article