Your browser doesn't support javascript.
loading
Maternal dietary betaine supplementation modifies hepatic expression of cholesterol metabolic genes via epigenetic mechanisms in newborn piglets.
Cai, Demin; Jia, Yimin; Lu, Jingyu; Yuan, Mengjie; Sui, Shiyan; Song, Haogang; Zhao, Ruqian.
Afiliação
  • Cai D; Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University,Nanjing210095,People's Republic of China.
  • Jia Y; Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University,Nanjing210095,People's Republic of China.
  • Lu J; Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University,Nanjing210095,People's Republic of China.
  • Yuan M; Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University,Nanjing210095,People's Republic of China.
  • Sui S; Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University,Nanjing210095,People's Republic of China.
  • Song H; Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University,Nanjing210095,People's Republic of China.
  • Zhao R; Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University,Nanjing210095,People's Republic of China.
Br J Nutr ; 112(9): 1459-68, 2014 Nov 14.
Article em En | MEDLINE | ID: mdl-25216241
To elucidate the effects of maternal dietary betaine supplementation on hepatic expression of cholesterol metabolic genes in newborn piglets and the involved epigenetic mechanisms, we fed gestational sows with control or betaine-supplemented diets (3 g/kg) throughout pregnancy. Neonatal piglets born to betaine-supplemented sows had higher serum methionine concentration and hepatic content of betaine, which was associated with significantly up-regulated hepatic expression of glycine N-methyltransferase. Prenatal betaine exposure increased hepatic cholesterol content and modified the hepatic expression of cholesterol metabolic genes in neonatal piglets. Sterol regulatory element-binding protein 2 was down-regulated at both mRNA and protein levels, while 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) was down-regulated at the mRNA level, but up-regulated at the protein level, in betaine-exposed piglets. The transcriptional repression of HMGCR was associated with CpG island hypermethylation and higher repressive histone mark H3K27me3 (histone H3 lysine 27 trimethylation) on the promoter, whereas increased HMGCR protein content was associated with significantly decreased expression of miR-497. Furthermore, LDL receptor was significantly down-regulated at both mRNA and protein levels in the liver of betaine-exposed piglets, which was associated with promoter CpG hypermethylation. In addition, the expression of cholesterol-27α-hydroxylase (CYP27α1) was up-regulated at both mRNA and protein levels, while the expression of cholesterol-7α-hydroxylase (CYP7α1) was increased at the mRNA level, but unchanged at the protein level associated with increased expression of miR-181. These results indicate that maternal betaine supplementation increases hepatic cholesterol content in neonatal piglets through epigenetic regulations of cholesterol metabolic genes, which involve alterations in DNA and histone methylation and in the expression of microRNA targeting these genes.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Betaína / Colesterol / Sus scrofa / Epigênese Genética / Fígado / Animais Recém-Nascidos Limite: Animals / Pregnancy Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Betaína / Colesterol / Sus scrofa / Epigênese Genética / Fígado / Animais Recém-Nascidos Limite: Animals / Pregnancy Idioma: En Ano de publicação: 2014 Tipo de documento: Article