Your browser doesn't support javascript.
loading
Narrow bandgap in ß-BaZn2As2 and its chemical origins.
Xiao, Zewen; Hiramatsu, Hidenori; Ueda, Shigenori; Toda, Yoshitake; Ran, Fan-Yong; Guo, Jiangang; Lei, Hechang; Matsuishi, Satoru; Hosono, Hideo; Kamiya, Toshio.
Afiliação
  • Xiao Z; Materials and Structures Laboratory, ‡Materials Research Center for Element Strategy, and #Frontier Research Center, Tokyo Institute of Technology , Yokohama 226-8503, Japan.
J Am Chem Soc ; 136(42): 14959-65, 2014 Oct 22.
Article em En | MEDLINE | ID: mdl-25255380
ABSTRACT
ß-BaZn2As2 is known to be a p-type semiconductor with the layered crystal structure similar to that of LaZnAsO, leading to the expectation that ß-BaZn2As2 and LaZnAsO have similar bandgaps; however, the bandgap of ß-BaZn2As2 (previously reported value ~0.2 eV) is 1 order of magnitude smaller than that of LaZnAsO (1.5 eV). In this paper, the reliable bandgap value of ß-BaZn2As2 is determined to be 0.23 eV from the intrinsic region of the temperature dependence of electrical conductivity. The origins of this narrow bandgap are discussed based on the chemical bonding nature probed by 6 keV hard X-ray photoemission spectroscopy, hybrid density functional calculations, and the ligand theory. One origin is the direct As-As hybridization between adjacent [ZnAs] layers, which leads to a secondary splitting of As 4p levels and raises the valence band maximum. The other is that the nonbonding Ba 5d(x(2)-y(2)) orbitals form an unexpectedly deep conduction band minimum (CBM) in ß-BaZn2As2 although the CBM of LaZnAsO is formed mainly of Zn 4s. These two origins provide a quantitative explanation for the bandgap difference between ß-BaZn2As2 and LaZnAsO.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2014 Tipo de documento: Article