Your browser doesn't support javascript.
loading
Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity.
Krause, Bryan M; Raz, Aeyal; Uhlrich, Daniel J; Smith, Philip H; Banks, Matthew I.
Afiliação
  • Krause BM; Neuroscience Training Program, University of Wisconsin Madison, WI, USA.
  • Raz A; Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Anesthesiology, Rabin Medical Center, Petah-Tikva, Israel, affiliated with Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel.
  • Uhlrich DJ; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA.
  • Smith PH; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA.
  • Banks MI; Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA.
Front Syst Neurosci ; 8: 170, 2014.
Article em En | MEDLINE | ID: mdl-25285071
ABSTRACT
The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce "packets" of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013). However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC) pathways sequentially activate cells in layers 4 (L4), L2/3, and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2-6, presumably via synapses onto dendritic processes located in L3 and L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a non-linear amplification process, are initiated by infragranular cells and tightly regulated by feed-forward inhibitory cells.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2014 Tipo de documento: Article