Your browser doesn't support javascript.
loading
Comparative analysis and modeling of the severity of steatohepatitis in DDC-treated mouse strains.
Pandey, Vikash; Sultan, Marc; Kashofer, Karl; Ralser, Meryem; Amstislavskiy, Vyacheslav; Starmann, Julia; Osprian, Ingrid; Grimm, Christina; Hache, Hendrik; Yaspo, Marie-Laure; Sültmann, Holger; Trauner, Michael; Denk, Helmut; Zatloukal, Kurt; Lehrach, Hans; Wierling, Christoph.
Afiliação
  • Pandey V; Max Planck Institute for Molecular Genetics, Department Vertebrate Genomics, Berlin, Germany.
  • Sultan M; Max Planck Institute for Molecular Genetics, Department Vertebrate Genomics, Berlin, Germany.
  • Kashofer K; Institute of Pathology, Medical University of Graz, Graz, Austria.
  • Ralser M; Max Planck Institute for Molecular Genetics, Department Vertebrate Genomics, Berlin, Germany.
  • Amstislavskiy V; Max Planck Institute for Molecular Genetics, Department Vertebrate Genomics, Berlin, Germany.
  • Starmann J; German Cancer Research Center, Heidelberg, Germany.
  • Osprian I; BIOCRATES Life Sciences AG, Innsbruck, Austria; LKH Wagna, Department of Internal Medicine, Wagna, Austria.
  • Grimm C; Rheumatology and Clinical Immunology, Charité-University Medicine, Berlin, Germany.
  • Hache H; Max Planck Institute for Molecular Genetics, Department Vertebrate Genomics, Berlin, Germany.
  • Yaspo ML; Max Planck Institute for Molecular Genetics, Department Vertebrate Genomics, Berlin, Germany; Dahlem Centre for Genome Research and Medical Systems Biology, Berlin, Germany.
  • Sültmann H; German Cancer Research Center, Heidelberg, Germany.
  • Trauner M; Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of Vienna, Vienna, Austria.
  • Denk H; Institute of Pathology, Medical University of Graz, Graz, Austria.
  • Zatloukal K; Institute of Pathology, Medical University of Graz, Graz, Austria.
  • Lehrach H; Max Planck Institute for Molecular Genetics, Department Vertebrate Genomics, Berlin, Germany; Dahlem Centre for Genome Research and Medical Systems Biology, Berlin, Germany.
  • Wierling C; Max Planck Institute for Molecular Genetics, Department Vertebrate Genomics, Berlin, Germany.
PLoS One ; 9(10): e111006, 2014.
Article em En | MEDLINE | ID: mdl-25347188
ABSTRACT

BACKGROUND:

Non-alcoholic fatty liver disease (NAFLD) has a broad spectrum of disease states ranging from mild steatosis characterized by an abnormal retention of lipids within liver cells to steatohepatitis (NASH) showing fat accumulation, inflammation, ballooning and degradation of hepatocytes, and fibrosis. Ultimately, steatohepatitis can result in liver cirrhosis and hepatocellular carcinoma. METHODOLOGY AND

RESULTS:

In this study we have analyzed three different mouse strains, A/J, C57BL/6J, and PWD/PhJ, that show different degrees of steatohepatitis when administered a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) containing diet. RNA-Seq gene expression analysis, protein analysis and metabolic profiling were applied to identify differentially expressed genes/proteins and perturbed metabolite levels of mouse liver samples upon DDC-treatment. Pathway analysis revealed alteration of arachidonic acid (AA) and S-adenosylmethionine (SAMe) metabolism upon other pathways. To understand metabolic changes of arachidonic acid metabolism in the light of disease expression profiles a kinetic model of this pathway was developed and optimized according to metabolite levels. Subsequently, the model was used to study in silico effects of potential drug targets for steatohepatitis.

CONCLUSIONS:

We identified AA/eicosanoid metabolism as highly perturbed in DDC-induced mice using a combination of an experimental and in silico approach. Our analysis of the AA/eicosanoid metabolic pathway suggests that 5-hydroxyeicosatetraenoic acid (5-HETE), 15-hydroxyeicosatetraenoic acid (15-HETE) and prostaglandin D2 (PGD2) are perturbed in DDC mice. We further demonstrate that a dynamic model can be used for qualitative prediction of metabolic changes based on transcriptomics data in a disease-related context. Furthermore, SAMe metabolism was identified as being perturbed due to DDC treatment. Several genes as well as some metabolites of this module show differences between A/J and C57BL/6J on the one hand and PWD/PhJ on the other.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fígado Gorduroso Tipo de estudo: Prognostic_studies / Qualitative_research Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fígado Gorduroso Tipo de estudo: Prognostic_studies / Qualitative_research Limite: Animals Idioma: En Ano de publicação: 2014 Tipo de documento: Article