Your browser doesn't support javascript.
loading
Electrophoretic separation of alginic sodium diester and sodium hexametaphosphate in chondroitin sulfate that interfere with the cetylpyridinium chloride titration assay.
J AOAC Int ; 97(6): 1503-13, 2014.
Article em En | MEDLINE | ID: mdl-25372663
The most commonly used chondroitin sulfate (CS) assay method is cetylpyridinium chloride (CPC) titration. Cellulose acetate membrane electrophoresis (CAME) is the technique used for detection of impurities in the U.S. Pharmacopeia's CS monograph. Because CPC titration is a relatively nonspecific quantitative technique, the apparent amount of CS as determined by CPC titration alone may not reflect the true amount of CS due to possible interference with the CPC assay by impurities that contain CPC titratable functional groups. When CAME is used in conjunction with CPC titration, certain non-CS and adulterants can be visualized and estimated, and a true value for CS can be assigned once the presence of these non-CS impurities has been ruled out. This study examines conjunct application of CPC and CAME in ascertaining CS assay and purity in the presence of certain adulterants. These include propylene glycol alginate sulfate sodium, known in commerce as alginic sodium diester (ASD), and Zero One (Z1), a water-soluble agent newly reported in the CS marketplace and subsequently identified as sodium hexametaphosphate. ASD, Z1, and CS are similar in physical appearance and solubility in water and ethanol. They are also titratable anions and form ionic pairs with CPC, therefore interfering with the CPC titration assay for CS CAME separates these adulterants from each other and from CS by differences in their electrophoretic mobility. CAME is able to detect these impurities in CS at levels as low as 0.66% by weight. Although it is recommended that a method for detecting impurities (e.g., CAME) be used in cormbination with relatively nonspecific assay methods such as CPC titration, this is seldom done in practice. Assay results for CS derived fromn CPC titration may, therefore, be misleading, leaving the CS supply chain vulnerable to adulteration. In this study, the authors investigated ASD and Z1 adulteration of CS and developed an electrophoretic separation of these adulterants in CS and procedures to isolate ASD from CS matrixes containing these adulterants. The authors describe in this paper utilization of an orthogonal approach to establish the identity of Z1 as sodium hexametaphosphate and to confirm the identity of ASD, including ethanol fractionation, FTIR spectroscopy, differential scanning calorimetry, and NMR spectroscopy. The authors suggest that CAME is a cost-effective and easy to use methodfor detecting certain impurities in CS raw ingredients and recommend that CPC and CAME be used in combination by QC laboratories as a means of effectively deterring the practice of adulterating CS raw materials with the known adulterants ASD and Z1 and/or other non-chondroitin substances that can be separated from CSby CAME and that exhibit CPC titration behavior similar to CS.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Fosfatos / Cetilpiridínio / Sulfatos de Condroitina / Eletroforese em Acetato de Celulose / Alginatos Idioma: En Ano de publicação: 2014 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Fosfatos / Cetilpiridínio / Sulfatos de Condroitina / Eletroforese em Acetato de Celulose / Alginatos Idioma: En Ano de publicação: 2014 Tipo de documento: Article