Your browser doesn't support javascript.
loading
Implantation and atomic-scale investigation of self-interstitials in graphene.
Lehtinen, Ossi; Vats, Nilesh; Algara-Siller, Gerardo; Knyrim, Pia; Kaiser, Ute.
Afiliação
  • Lehtinen O; Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University , 89081 Ulm, Germany.
Nano Lett ; 15(1): 235-41, 2015 Jan 14.
Article em En | MEDLINE | ID: mdl-25494293
Crystallographic defects play a key role in determining the properties of crystalline materials. The new class of two-dimensional materials, foremost graphene, have enabled atomically resolved studies of defects, such as vacancies,1-4 grain boundaries,(5-7) dislocations,(8,9) and foreign atom substitutions.(10-14) However, atomic resolution imaging of implanted self-interstitials has so far been reported neither in any three-dimensional nor in any two-dimensional material. Here, we deposit extra carbon into single-layer graphene at soft landing energies of ∼ 1 eV using a standard carbon coater. We identify all the self-interstitial dimer structures theoretically predicted earlier,(15-17) employing 80 kV aberration-corrected high-resolution transmission electron microscopy. We demonstrate accumulation of the interstitials into larger aggregates and dislocation dipoles, which we predict to have strong local curvature by atomistic modeling, and to be energetically favorable configurations as compared to isolated interstitial dimers. Our results contribute to the basic knowledge on crystallographic defects and lay out a pathway into engineering the properties of graphene by pushing the crystal into a state of metastable supersaturation.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2015 Tipo de documento: Article