Your browser doesn't support javascript.
loading
Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms.
Zamykal, Martin; Martens, Tobias; Matschke, Jakob; Günther, Hauke S; Kathagen, Annegret; Schulte, Alexander; Peters, Regina; Westphal, Manfred; Lamszus, Katrin.
Afiliação
  • Zamykal M; Department of Neurosurgery (M.Z., T.M., H.S.G., A.K., A.S., R.P., M.W., K.L.) and Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.M.).
  • Martens T; Department of Neurosurgery (M.Z., T.M., H.S.G., A.K., A.S., R.P., M.W., K.L.) and Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.M.).
  • Matschke J; Department of Neurosurgery (M.Z., T.M., H.S.G., A.K., A.S., R.P., M.W., K.L.) and Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.M.).
  • Günther HS; Department of Neurosurgery (M.Z., T.M., H.S.G., A.K., A.S., R.P., M.W., K.L.) and Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.M.).
  • Kathagen A; Department of Neurosurgery (M.Z., T.M., H.S.G., A.K., A.S., R.P., M.W., K.L.) and Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.M.).
  • Schulte A; Department of Neurosurgery (M.Z., T.M., H.S.G., A.K., A.S., R.P., M.W., K.L.) and Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.M.).
  • Peters R; Department of Neurosurgery (M.Z., T.M., H.S.G., A.K., A.S., R.P., M.W., K.L.) and Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.M.).
  • Westphal M; Department of Neurosurgery (M.Z., T.M., H.S.G., A.K., A.S., R.P., M.W., K.L.) and Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.M.).
  • Lamszus K; Department of Neurosurgery (M.Z., T.M., H.S.G., A.K., A.S., R.P., M.W., K.L.) and Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (J.M.).
Neuro Oncol ; 17(8): 1076-85, 2015 Aug.
Article em En | MEDLINE | ID: mdl-25543125
ABSTRACT

BACKGROUND:

Signaling by insulin-like growth factor 1 receptor (IGF-1R) can contribute to the formation and progression of many diverse tumor types, including glioblastoma. We investigated the effect of the IGF-1R blocking antibody IMC-A12 on glioblastoma growth in different in vivo models.

METHODS:

U87 cells were chosen to establish rapidly growing, angiogenesis-dependent tumors in the brains of nude mice, and the GS-12 cell line was used to generate highly invasive tumors. IMC-A12 was administered using convection-enhanced local delivery. Tumor parameters were quantified histologically, and the functional relevance of IGF-1R activation was analyzed in vitro.

RESULTS:

IMC-A12 treatment inhibited the growth of U87 and GS-12 tumors by 75% and 50%, respectively. In GS-12 tumors, the invasive tumor extension and proliferation rate were significantly reduced by IMC-A12 treatment, while apoptosis was increased. In IMC-A12-treated U87 tumors, intratumoral vascularization was markedly decreased, and tumor cell proliferation was moderately reduced. Flow cytometry showed that <2% of U87 cells but >85% of GS-12 cells expressed IGF-1R. Activation of IGF-1R by IGF-1 and IGF-2 in GS-12 cells was blocked by IMC-A12. Both ligands stimulated GS-12 cell proliferation, and IGF-2 also stimulated migration. IMC-A12 inhibited these stimulatory effects and increased apoptosis. In U87 cells, stimulation with either ligand had no functional effect.

CONCLUSIONS:

IGF-1R blockade can inhibit glioblastoma growth by different mechanisms, including direct effects on the tumor cells as well as indirect anti-angiogenic effects. Hence, blocking IGF-1R may be useful to target both the highly proliferative, angiogenesis-dependent glioblastoma core component as well as the infiltrative periphery.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Encefálicas / Glioblastoma / Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias Encefálicas / Glioblastoma / Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article