Your browser doesn't support javascript.
loading
Albumin-deficient mouse models for studying metabolism of human albumin and pharmacokinetics of albumin-based drugs.
Roopenian, Derry C; Low, Benjamin E; Christianson, Gregory J; Proetzel, Gabriele; Sproule, Thomas J; Wiles, Michael V.
Afiliação
  • Roopenian DC; a The Jackson Laboratory ; Bar Harbor , ME USA.
MAbs ; 7(2): 344-51, 2015.
Article em En | MEDLINE | ID: mdl-25654695
Serum albumin is the major determinant of blood colloidal osmotic pressure acting as a depot and distributor of compounds including drugs. In humans, serum albumin exhibits an unusually long half-life mainly due to protection from catabolism by neonatal Fc receptor (FcRn)-mediated recycling. These properties make albumin an attractive courier of therapeutically-active compounds. However, pharmaceutical research and development of albumin-based therapeutics has been hampered by the lack of appropriate preclinical animal models. To overcome this, we developed and describe the first mouse with a genetic deficiency in albumin and its incorporation into an existing humanized FcRn mouse model, B6.Cg-Fcgrt(tm1Dcr) Tg(FCGRT)32Dcr/DcrJ (Tg32). Albumin-deficient strains (Alb(-/-)) were created by TALEN-mediated disruption of the albumin (Alb) gene directly in fertilized oocytes derived from Tg32 mice and its non-transgenic background control, C57BL/6J (B6). The resulting Alb(-/-) strains are analbuminemic but healthy. Intravenous administration of human albumin to Tg32-Alb(-/-) mFcRn(-/-) hFcRn(Tg/Tg)) mice results in a remarkably extended human albumin serum half-life of ∼24 days, comparable to that found in humans, and in contrast to half-lives of 2.6-5.8 d observed in B6, B6-Alb(-/-) and Tg32 strains. This striking increase can be explained by the absence of competing endogenous mouse albumin and the presence of an active human FcRn. These novel albumin-deficient models provide unique tools for investigating the biology and pathobiology of serum albumin and are a more appropriate rodent surrogates for evaluating human serum albumin pharmacokinetics and albumin-based compounds.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Albumina Sérica / Modelos Biológicos Limite: Animals / Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Albumina Sérica / Modelos Biológicos Limite: Animals / Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article