Your browser doesn't support javascript.
loading
Large-scale exploration and analysis of drug combinations.
Li, Peng; Huang, Chao; Fu, Yingxue; Wang, Jinan; Wu, Ziyin; Ru, Jinlong; Zheng, Chunli; Guo, Zihu; Chen, Xuetong; Zhou, Wei; Zhang, Wenjuan; Li, Yan; Chen, Jianxin; Lu, Aiping; Wang, Yonghua.
Afiliação
  • Li P; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
  • Huang C; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
  • Fu Y; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
  • Wang J; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
  • Wu Z; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
  • Ru J; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
  • Zheng C; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
  • Guo Z; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
  • Chen X; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
  • Zhou W; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
  • Zhang W; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
  • Li Y; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
  • Chen J; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
  • Lu A; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
  • Wang Y; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China, School of Chemical engineering, Dalian University of Technology, Dalian, Liaoning, China, Beijing University of Chinese Medicine, ChaoYang District, Beijing, China
Bioinformatics ; 31(12): 2007-16, 2015 Jun 15.
Article em En | MEDLINE | ID: mdl-25667546
ABSTRACT
MOTIVATION Drug combinations are a promising strategy for combating complex diseases by improving the efficacy and reducing corresponding side effects. Currently, a widely studied problem in pharmacology is to predict effective drug combinations, either through empirically screening in clinic or pure experimental trials. However, the large-scale prediction of drug combination by a systems method is rarely considered.

RESULTS:

We report a systems pharmacology framework to predict drug combinations (PreDCs) on a computational model, termed probability ensemble approach (PEA), for analysis of both the efficacy and adverse effects of drug combinations. First, a Bayesian network integrating with a similarity algorithm is developed to model the combinations from drug molecular and pharmacological phenotypes, and the predictions are then assessed with both clinical efficacy and adverse effects. It is illustrated that PEA can predict the combination efficacy of drugs spanning different therapeutic classes with high specificity and sensitivity (AUC = 0.90), which was further validated by independent data or new experimental assays. PEA also evaluates the adverse effects (AUC = 0.95) quantitatively and detects the therapeutic indications for drug combinations. Finally, the PreDC database includes 1571 known and 3269 predicted optimal combinations as well as their potential side effects and therapeutic indications. AVAILABILITY AND IMPLEMENTATION The PreDC database is available at http//sm.nwsuaf.edu.cn/lsp/predc.php.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Biologia Computacional / Combinação de Medicamentos / Bases de Dados de Produtos Farmacêuticos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Biologia Computacional / Combinação de Medicamentos / Bases de Dados de Produtos Farmacêuticos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article