Your browser doesn't support javascript.
loading
Phosphatidic acid-mediated activation and translocation to the cell surface of sialidase NEU3, promoting signaling for cell migration.
Shiozaki, Kazuhiro; Takahashi, Kohta; Hosono, Masahiro; Yamaguchi, Kazunori; Hata, Keiko; Shiozaki, Momo; Bassi, Rosaria; Prinetti, Alessandro; Sonnino, Sandro; Nitta, Kazuo; Miyagi, Taeko.
Afiliação
  • Shiozaki K; *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research In
  • Takahashi K; *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research In
  • Hosono M; *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research In
  • Yamaguchi K; *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research In
  • Hata K; *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research In
  • Shiozaki M; *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research In
  • Bassi R; *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research In
  • Prinetti A; *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research In
  • Sonnino S; *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research In
  • Nitta K; *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research In
  • Miyagi T; *Faculty of Fisheries and The United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Kagoshima, Japan; Division of Cancer Glycosylation Research and Division of Cell Recognition Study, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan; Miyagi Cancer Center Research In
FASEB J ; 29(5): 2099-111, 2015 May.
Article em En | MEDLINE | ID: mdl-25678627
ABSTRACT
The plasma membrane-associated sialidase NEU3 plays crucial roles in regulation of transmembrane signaling, and its aberrant up-regulation in various cancers contributes to malignancy. However, it remains uncertain how NEU3 is naturally activated and locates to plasma membranes, because of its Triton X-100 requirement for the sialidase activity in vitro and its often changing subcellular location. Among phospholipids examined, we demonstrate that phosphatidic acid (PA) elevates its sialidase activity 4 to 5 times at 50 µM in vitro at neutral pH and promotes translocation to the cell surface and cell migration through Ras-signaling in HeLa and COS-1 cells. NEU3 was found to interact selectively with PA as assessed by phospholipid array, liposome coprecipitation, and ELISA assays and to colocalize with phospholipase D (PLD) 1 in response to epidermal growth factor (EGF) or serum stimulation. Studies using tagged NEU3 fragments with point mutations identified PA- and calmodulin (CaM)-binding sites around the N terminus and confirmed its participation in translocation and catalytic activity. EGF induced PLD1 activation concomitantly with enhanced NEU3 translocation to the cell surface, as assessed by confocal microscopy. These results suggest that interactions of NEU3 with PA produced by PLD1 are important for regulation of transmembrane signaling, this aberrant acceleration probably promoting malignancy in cancers.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácidos Fosfatídicos / Transdução de Sinais / Membrana Celular / Movimento Celular / Transporte Proteico / Neuraminidase Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácidos Fosfatídicos / Transdução de Sinais / Membrana Celular / Movimento Celular / Transporte Proteico / Neuraminidase Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article