Your browser doesn't support javascript.
loading
Morphological covariance in anatomical MRI scans can identify discrete neural pathways in the brain and their disturbances in persons with neuropsychiatric disorders.
Bansal, Ravi; Hao, Xuejun; Peterson, Bradley S.
Afiliação
  • Bansal R; Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA. Electronic address: bansalr@nyspi.columbia.edu.
  • Hao X; Department of Psychiatry, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA.
  • Peterson BS; Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.
Neuroimage ; 111: 215-27, 2015 May 01.
Article em En | MEDLINE | ID: mdl-25700952
ABSTRACT
We hypothesize that coordinated functional activity within discrete neural circuits induces morphological organization and plasticity within those circuits. Identifying regions of morphological covariation that are independent of morphological covariation in other regions therefore may therefore allow us to identify discrete neural systems within the brain. Comparing the magnitude of these variations in individuals who have psychiatric disorders with the magnitude of variations in healthy controls may allow us to identify aberrant neural pathways in psychiatric illnesses. We measured surface morphological features by applying nonlinear, high-dimensional warping algorithms to manually defined brain regions. We transferred those measures onto the surface of a unit sphere via conformal mapping and then used spherical wavelets and their scaling coefficients to simplify the data structure representing these surface morphological features of each brain region. We used principal component analysis (PCA) to calculate covariation in these morphological measures, as represented by their scaling coefficients, across several brain regions. We then assessed whether brain subregions that covaried in morphology, as identified by large eigenvalues in the PCA, identified specific neural pathways of the brain. To do so, we spatially registered the subnuclei for each eigenvector into the coordinate space of a Diffusion Tensor Imaging dataset; we used these subnuclei as seed regions to track and compare fiber pathways with known fiber pathways identified in neuroanatomical atlases. We applied these procedures to anatomical MRI data in a cohort of 82 healthy participants (42 children, 18 males, age 10.5 ± 2.43 years; 40 adults, 22 males, age 32.42 ± 10.7 years) and 107 participants with Tourette's Syndrome (TS) (71 children, 59 males, age 11.19 ± 2.2 years; 36 adults, 21 males, age 37.34 ± 10.9 years). We evaluated the construct validity of the identified covariation in morphology using DTI data from a different set of 20 healthy adults (10 males, mean age 29.7 ± 7.7 years). The PCA identified portions of structures that covaried across the brain, the eigenvalues measuring the magnitude of the covariation in morphology along the respective eigenvectors. Our results showed that the eigenvectors, and the DTI fibers tracked from their associated brain regions, corresponded with known neural pathways in the brain. In addition, the eigenvectors that captured morphological covariation across regions, and the principal components along those eigenvectors, identified neural pathways with aberrant morphological features associated with TS. These findings suggest that covariations in brain morphology can identify aberrant neural pathways in specific neuropsychiatric disorders.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento por Ressonância Magnética / Síndrome de Tourette Tipo de estudo: Prognostic_studies Limite: Adolescent / Adult / Child / Female / Humans / Male Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento por Ressonância Magnética / Síndrome de Tourette Tipo de estudo: Prognostic_studies Limite: Adolescent / Adult / Child / Female / Humans / Male Idioma: En Ano de publicação: 2015 Tipo de documento: Article