Your browser doesn't support javascript.
loading
A computational design approach for virtual screening of peptide interactions across K(+) channel families.
Doupnik, Craig A; Parra, Katherine C; Guida, Wayne C.
Afiliação
  • Doupnik CA; Department of Molecular Pharmacology & Physiology, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612, United States.
  • Parra KC; Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, United States.
  • Guida WC; Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, United States ; Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, United States.
Comput Struct Biotechnol J ; 13: 85-94, 2015.
Article em En | MEDLINE | ID: mdl-25709757
ABSTRACT
Ion channels represent a large family of membrane proteins with many being well established targets in pharmacotherapy. The 'druggability' of heteromeric channels comprised of different subunits remains obscure, due largely to a lack of channel-specific probes necessary to delineate their therapeutic potential in vivo. Our initial studies reported here, investigated the family of inwardly rectifying potassium (Kir) channels given the availability of high resolution crystal structures for the eukaryotic constitutively active Kir2.2 channel. We describe a 'limited' homology modeling approach that can yield chimeric Kir channels having an outer vestibule structure representing nearly any known vertebrate or invertebrate channel. These computationally-derived channel structures were tested ""in silico for 'docking' to NMR structures of tertiapin (TPN), a 21 amino acid peptide found in bee venom. TPN is a highly selective and potent blocker for the epithelial rat Kir1.1 channel, but does not block human or zebrafish Kir1.1 channel isoforms. Our Kir1.1 channel-TPN docking experiments recapitulated published in vitro ""findings for TPN-sensitive and TPN-insensitive channels. Additionally, in silico site-directed mutagenesis identified 'hot spots' within the channel outer vestibule that mediate energetically favorable docking scores and correlate with sites previously identified with in vitro thermodynamic mutant-cycle analysis. These 'proof-of-principle' results establish a framework for virtual screening of re-engineered peptide toxins for interactions with computationally derived Kir channels that currently lack channel-specific blockers. When coupled with electrophysiological validation, this virtual screening approach may accelerate the drug discovery process, and can be readily applied to other ion channels families where high resolution structures are available.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies / Screening_studies Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies / Screening_studies Idioma: En Ano de publicação: 2015 Tipo de documento: Article