Your browser doesn't support javascript.
loading
Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes.
Minciacchi, Valentina R; Freeman, Michael R; Di Vizio, Dolores.
Afiliação
  • Minciacchi VR; Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
  • Freeman MR; Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; The Urological Diseases Research Center; Boston Children's Hospital, Boston, MA, United States; Department of Surgery, Harvard Medical School, Boston, MA, United States.
  • Di Vizio D; Division of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; The Urological Diseases Research Center; Boston Children's Hospital, Boston, MA, United States; Department of Surgery, Harvard Medical School, Boston, MA, United States. Electronic address: Dolores.Divizio@cshs.org.
Semin Cell Dev Biol ; 40: 41-51, 2015 Apr.
Article em En | MEDLINE | ID: mdl-25721812
Since their first description, extracellular vesicles (EVs) have been the topic of avid study in a variety of physiologic contexts and are now thought to play an important role in cancer. The state of knowledge on biogenesis, molecular content and horizontal communication of diverse types of cancer EVs has expanded considerably in recent years. As a consequence, a plethora of information about EV composition and molecular function has emerged, along with the notion that cancer cells rely on these particles to invade tissues and propagate oncogenic signals at distance. The number of in vivo studies, designed to achieve a deeper understanding of the extent to which EV biology can be applied to clinically relevant settings, is rapidly growing. This review summarizes recent studies on cancer-derived EV functions, with an overview about biogenesis and molecular cargo of exosomes, microvesicles and large oncosomes. We also discuss current challenges and emerging technologies that might improve EV detection in various biological systems. Further studies on the functional role of EVs in specific steps of cancer formation and progression will expand our understanding of the diversity of paracrine signaling mechanisms in malignant growth.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vesículas Extracelulares / Neoplasias Limite: Animals / Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vesículas Extracelulares / Neoplasias Limite: Animals / Humans Idioma: En Ano de publicação: 2015 Tipo de documento: Article