Your browser doesn't support javascript.
loading
Cells as liquid motors: mechanosensitivity emerges from collective dynamics of actomyosin cortex.
Étienne, Jocelyn; Fouchard, Jonathan; Mitrossilis, Démosthène; Bufi, Nathalie; Durand-Smet, Pauline; Asnacios, Atef.
Afiliação
  • Étienne J; Université Grenoble Alpes and CNRS, Laboratoire Interdisciplinaire de Physique, F-38000 Grenoble, France; and jocelyn.etienne@Ujf-grenoble.fr.
  • Fouchard J; Université Paris-Diderot and CNRS, Sorbonne Paris Cité, Laboratoire Matière et Systèmes Complexes, UMR 7057, Paris, France.
  • Mitrossilis D; Université Paris-Diderot and CNRS, Sorbonne Paris Cité, Laboratoire Matière et Systèmes Complexes, UMR 7057, Paris, France.
  • Bufi N; Université Paris-Diderot and CNRS, Sorbonne Paris Cité, Laboratoire Matière et Systèmes Complexes, UMR 7057, Paris, France.
  • Durand-Smet P; Université Paris-Diderot and CNRS, Sorbonne Paris Cité, Laboratoire Matière et Systèmes Complexes, UMR 7057, Paris, France.
  • Asnacios A; Université Paris-Diderot and CNRS, Sorbonne Paris Cité, Laboratoire Matière et Systèmes Complexes, UMR 7057, Paris, France.
Proc Natl Acad Sci U S A ; 112(9): 2740-5, 2015 Mar 03.
Article em En | MEDLINE | ID: mdl-25730854
Living cells adapt and respond actively to the mechanical properties of their environment. In addition to biochemical mechanotransduction, evidence exists for a myosin-dependent purely mechanical sensitivity to the stiffness of the surroundings at the scale of the whole cell. Using a minimal model of the dynamics of actomyosin cortex, we show that the interplay of myosin power strokes with the rapidly remodeling actin network results in a regulation of force and cell shape that adapts to the stiffness of the environment. Instantaneous changes of the environment stiffness are found to trigger an intrinsic mechanical response of the actomyosin cortex. Cortical retrograde flow resulting from actin polymerization at the edges is shown to be modulated by the stress resulting from myosin contractility, which in turn, regulates the cell length in a force-dependent manner. The model describes the maximum force that cells can exert and the maximum speed at which they can contract, which are measured experimentally. These limiting cases are found to be associated with energy dissipation phenomena, which are of the same nature as those taking place during the contraction of a whole muscle. This similarity explains the fact that single nonmuscle cell and whole-muscle contraction both follow a Hill-like force-velocity relationship.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Citoesqueleto de Actina / Actomiosina / Miosinas / Força Muscular / Modelos Biológicos / Contração Muscular Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Citoesqueleto de Actina / Actomiosina / Miosinas / Força Muscular / Modelos Biológicos / Contração Muscular Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article