Your browser doesn't support javascript.
loading
Developmentally Regulated Post-translational Modification of Nucleoplasmin Controls Histone Sequestration and Deposition.
Onikubo, Takashi; Nicklay, Joshua J; Xing, Li; Warren, Christopher; Anson, Brandon; Wang, Wei-Lin; Burgos, Emmanuel S; Ruff, Sophie E; Shabanowitz, Jeffrey; Cheng, R Holland; Hunt, Donald F; Shechter, David.
Afiliação
  • Onikubo T; Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
  • Nicklay JJ; Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA.
  • Xing L; Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA 95616, USA.
  • Warren C; Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
  • Anson B; Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA 95616, USA.
  • Wang WL; Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
  • Burgos ES; Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
  • Ruff SE; Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
  • Shabanowitz J; Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA.
  • Cheng RH; Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA 95616, USA.
  • Hunt DF; Departments of Chemistry and Pathology, University of Virginia, Charlottesville, VA 22904, USA. Electronic address: dfh@virginia.edu.
  • Shechter D; Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA. Electronic address: david.shechter@einstein.yu.edu.
Cell Rep ; 10(10): 1735-1748, 2015 Mar 17.
Article em En | MEDLINE | ID: mdl-25772360
ABSTRACT
Nucleoplasmin (Npm) is an abundant histone chaperone in vertebrate oocytes and embryos. During embryogenesis, regulation of Npm histone binding is critical for its function in storing and releasing maternal histones to establish and maintain the zygotic epigenome. Here, we demonstrate that Xenopus laevis Npm post-translational modifications (PTMs) specific to the oocyte and egg promote either histone deposition or sequestration, respectively. Mass spectrometry and Npm phosphomimetic mutations used in chromatin assembly assays identified hyperphosphorylation on the N-terminal tail as a critical regulator for sequestration. C-terminal tail phosphorylation and PRMT5-catalyzed arginine methylation enhance nucleosome assembly by promoting histone interaction with the second acidic tract of Npm. Electron microscopy reconstructions of Npm and TTLL4 activity toward the C-terminal tail demonstrate that oocyte- and egg-specific PTMs cause Npm conformational changes. Our results reveal that PTMs regulate Npm chaperoning activity by modulating Npm conformation and Npm-histone interaction, leading to histone sequestration in the egg.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article