Your browser doesn't support javascript.
loading
Bisphenol A effects on gene expression in adipocytes from children: association with metabolic disorders.
Menale, Ciro; Piccolo, Maria Teresa; Cirillo, Grazia; Calogero, Raffaele A; Papparella, Alfonso; Mita, Luigi; Del Giudice, Emanuele Miraglia; Diano, Nadia; Crispi, Stefania; Mita, Damiano Gustavo.
Afiliação
  • Menale C; Department of Experimental MedicineSecond University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, ItalyNational Laboratory of Endocrine DisruptorsINBB, Via P. Castellino 111, 80131 Naples, ItalyGene Expression and Molecular Genetics LaboratoryIBBR - CNR, UOS Napoli Via P. Castellino 1
  • Piccolo MT; Department of Experimental MedicineSecond University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, ItalyNational Laboratory of Endocrine DisruptorsINBB, Via P. Castellino 111, 80131 Naples, ItalyGene Expression and Molecular Genetics LaboratoryIBBR - CNR, UOS Napoli Via P. Castellino 1
  • Cirillo G; Department of Experimental MedicineSecond University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, ItalyNational Laboratory of Endocrine DisruptorsINBB, Via P. Castellino 111, 80131 Naples, ItalyGene Expression and Molecular Genetics LaboratoryIBBR - CNR, UOS Napoli Via P. Castellino 1
  • Calogero RA; Department of Experimental MedicineSecond University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, ItalyNational Laboratory of Endocrine DisruptorsINBB, Via P. Castellino 111, 80131 Naples, ItalyGene Expression and Molecular Genetics LaboratoryIBBR - CNR, UOS Napoli Via P. Castellino 1
  • Papparella A; Department of Experimental MedicineSecond University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, ItalyNational Laboratory of Endocrine DisruptorsINBB, Via P. Castellino 111, 80131 Naples, ItalyGene Expression and Molecular Genetics LaboratoryIBBR - CNR, UOS Napoli Via P. Castellino 1
  • Mita L; Department of Experimental MedicineSecond University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, ItalyNational Laboratory of Endocrine DisruptorsINBB, Via P. Castellino 111, 80131 Naples, ItalyGene Expression and Molecular Genetics LaboratoryIBBR - CNR, UOS Napoli Via P. Castellino 1
  • Del Giudice EM; Department of Experimental MedicineSecond University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, ItalyNational Laboratory of Endocrine DisruptorsINBB, Via P. Castellino 111, 80131 Naples, ItalyGene Expression and Molecular Genetics LaboratoryIBBR - CNR, UOS Napoli Via P. Castellino 1
  • Diano N; Department of Experimental MedicineSecond University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, ItalyNational Laboratory of Endocrine DisruptorsINBB, Via P. Castellino 111, 80131 Naples, ItalyGene Expression and Molecular Genetics LaboratoryIBBR - CNR, UOS Napoli Via P. Castellino 1
  • Crispi S; Department of Experimental MedicineSecond University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, ItalyNational Laboratory of Endocrine DisruptorsINBB, Via P. Castellino 111, 80131 Naples, ItalyGene Expression and Molecular Genetics LaboratoryIBBR - CNR, UOS Napoli Via P. Castellino 1
  • Mita DG; Department of Experimental MedicineSecond University of Naples, Via S. Maria di Costantinopoli 16, 80138 Naples, ItalyNational Laboratory of Endocrine DisruptorsINBB, Via P. Castellino 111, 80131 Naples, ItalyGene Expression and Molecular Genetics LaboratoryIBBR - CNR, UOS Napoli Via P. Castellino 1
J Mol Endocrinol ; 54(3): 289-303, 2015 Jun.
Article em En | MEDLINE | ID: mdl-25878060
ABSTRACT
Bisphenol A (BPA) is a xenobiotic endocrine-disrupting chemical. In vitro and in vivo studies have indicated that BPA alters endocrine-metabolic pathways in adipose tissue, which increases the risk of metabolic disorders and obesity. BPA can affect adipose tissue and increase fat cell numbers or sizes by regulating the expression of the genes that are directly involved in metabolic homeostasis and obesity. Several studies performed in animal models have accounted for an obesogen role of BPA, but its effects on human adipocytes - especially in children - have been poorly investigated. The aim of this study is to understand the molecular mechanisms by which environmentally relevant doses of BPA can interfere with the canonical endocrine function that regulates metabolism in mature human adipocytes from prepubertal, non-obese children. BPA can act as an estrogen agonist or antagonist depending on the physiological context. To identify the molecular signatures associated with metabolism, transcriptional modifications of mature adipocytes from prepubertal children exposed to estrogen were evaluated by means of microarray analysis. The analysis of deregulated genes associated with metabolic disorders allowed us to identify a small group of genes that are expressed in an opposite manner from that of adipocytes treated with BPA. In particular, we found that BPA increases the expression of pro-inflammatory cytokines and the expression of FABP4 and CD36, two genes involved in lipid metabolism. In addition, BPA decreases the expression of PCSK1, a gene involved in insulin production. These results indicate that exposure to BPA may be an important risk factor for developing metabolic disorders that are involved in childhood metabolism dysregulation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fenóis / Compostos Benzidrílicos / Adipócitos / Disruptores Endócrinos / Transcriptoma Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Child / Female / Humans / Male Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fenóis / Compostos Benzidrílicos / Adipócitos / Disruptores Endócrinos / Transcriptoma Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Child / Female / Humans / Male Idioma: En Ano de publicação: 2015 Tipo de documento: Article