Your browser doesn't support javascript.
loading
Visualizing electromagnetic fields at the nanoscale by single molecule localization.
Steuwe, Christian; Erdelyi, Miklos; Szekeres, G; Csete, M; Baumberg, Jeremy J; Mahajan, Sumeet; Kaminski, Clemens F.
Afiliação
  • Steuwe C; †Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA, U.K.
  • Erdelyi M; ‡Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
  • Szekeres G; †Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA, U.K.
  • Csete M; §Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9, Hungary.
  • Baumberg JJ; §Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9, Hungary.
  • Mahajan S; ‡Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
  • Kaminski CF; ∥Institute for Life Sciences and Department of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K.
Nano Lett ; 15(5): 3217-23, 2015 May 13.
Article em En | MEDLINE | ID: mdl-25915093
ABSTRACT
Coupling of light to the free electrons at metallic surfaces allows the confinement of electric fields to subwavelength dimensions, far below the optical diffraction limit. While this is routinely used to manipulate light at the nanoscale, in electro-optic devices and enhanced spectroscopic techniques, no characterization technique for imaging the underlying nanoscopic electromagnetic fields exists, which does not perturb the field or employ complex electron beam imaging. Here, we demonstrate the direct visualization of electromagnetic fields on patterned metallic substrates at nanometer resolution, exploiting a strong "autonomous" fluorescence-blinking behavior of single molecules within the confined fields allowing their localization. Use of DNA-constructs for precise positioning of fluorescence dyes on the surface induces this distance-dependent autonomous blinking thus completely obviating the need for exogenous agents or switching methods. Mapping such electromagnetic field distributions at nanometer resolution aids the rational design of nanometals for diverse photonic applications.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA / Nanotecnologia / Campos Eletromagnéticos / Óptica e Fotônica Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA / Nanotecnologia / Campos Eletromagnéticos / Óptica e Fotônica Idioma: En Ano de publicação: 2015 Tipo de documento: Article