Your browser doesn't support javascript.
loading
Model Organisms in G Protein-Coupled Receptor Research.
Langenhan, Tobias; Barr, Maureen M; Bruchas, Michael R; Ewer, John; Griffith, Leslie C; Maiellaro, Isabella; Taghert, Paul H; White, Benjamin H; Monk, Kelly R.
Afiliação
  • Langenhan T; Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Divisio
  • Barr MM; Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Divisio
  • Bruchas MR; Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Divisio
  • Ewer J; Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Divisio
  • Griffith LC; Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Divisio
  • Maiellaro I; Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Divisio
  • Taghert PH; Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Divisio
  • White BH; Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Divisio
  • Monk KR; Institute of Physiology, Department of Neurophysiology (T.L.), and Institute of Pharmacology and Toxicology, Rudolf Virchow Center (I.M.), University of Würzburg, Germany, Würzburg, Germany; Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey (M.M.B.); Divisio
Mol Pharmacol ; 88(3): 596-603, 2015 Sep.
Article em En | MEDLINE | ID: mdl-25979002
ABSTRACT
The study of G protein-coupled receptors (GPCRs) has benefited greatly from experimental approaches that interrogate their functions in controlled, artificial environments. Working in vitro, GPCR receptorologists discovered the basic biologic mechanisms by which GPCRs operate, including their eponymous capacity to couple to G proteins; their molecular makeup, including the famed serpentine transmembrane unit; and ultimately, their three-dimensional structure. Although the insights gained from working outside the native environments of GPCRs have allowed for the collection of low-noise data, such approaches cannot directly address a receptor's native (in vivo) functions. An in vivo approach can complement the rigor of in vitro approaches as studied in model organisms, it imposes physiologic constraints on receptor action and thus allows investigators to deduce the most salient features of receptor function. Here, we briefly discuss specific examples in which model organisms have successfully contributed to the elucidation of signals controlled through GPCRs and other surface receptor systems. We list recent examples that have served either in the initial discovery of GPCR signaling concepts or in their fuller definition. Furthermore, we selectively highlight experimental advantages, shortcomings, and tools of each model organism.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Drosophila / Receptores Acoplados a Proteínas G / Drosophila Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Drosophila / Receptores Acoplados a Proteínas G / Drosophila Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article