Your browser doesn't support javascript.
loading
Multi-atlas and label fusion approach for patient-specific MRI based skull estimation.
Torrado-Carvajal, Angel; Herraiz, Joaquin L; Hernandez-Tamames, Juan A; San Jose-Estepar, Raul; Eryaman, Yigitcan; Rozenholc, Yves; Adalsteinsson, Elfar; Wald, Lawrence L; Malpica, Norberto.
Afiliação
  • Torrado-Carvajal A; Medical Image Analysis and Biometry Lab, Universidad Rey Juan Carlos, Mostoles, Madrid, Spain.
  • Herraiz JL; Madrid-MIT M+Vision Consortium, Madrid, Spain.
  • Hernandez-Tamames JA; Madrid-MIT M+Vision Consortium, Madrid, Spain.
  • San Jose-Estepar R; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
  • Eryaman Y; Medical Image Analysis and Biometry Lab, Universidad Rey Juan Carlos, Mostoles, Madrid, Spain.
  • Rozenholc Y; Madrid-MIT M+Vision Consortium, Madrid, Spain.
  • Adalsteinsson E; Madrid-MIT M+Vision Consortium, Madrid, Spain.
  • Wald LL; Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
  • Malpica N; Madrid-MIT M+Vision Consortium, Madrid, Spain.
Magn Reson Med ; 75(4): 1797-807, 2016 Apr.
Article em En | MEDLINE | ID: mdl-25981161
PURPOSE: MRI-based skull segmentation is a useful procedure for many imaging applications. This study describes a methodology for automatic segmentation of the complete skull from a single T1-weighted volume. METHODS: The skull is estimated using a multi-atlas segmentation approach. Using a whole head computed tomography (CT) scan database, the skull in a new MRI volume is detected by nonrigid image registration of the volume to every CT, and combination of the individual segmentations by label-fusion. We have compared Majority Voting, Simultaneous Truth and Performance Level Estimation (STAPLE), Shape Based Averaging (SBA), and the Selective and Iterative Method for Performance Level Estimation (SIMPLE) algorithms. RESULTS: The pipeline has been evaluated quantitatively using images from the Retrospective Image Registration Evaluation database (reaching an overlap of 72.46 ± 6.99%), a clinical CT-MR dataset (maximum overlap of 78.31 ± 6.97%), and a whole head CT-MRI pair (maximum overlap 78.68%). A qualitative evaluation has also been performed on MRI acquisition of volunteers. CONCLUSION: It is possible to automatically segment the complete skull from MRI data using a multi-atlas and label fusion approach. This will allow the creation of complete MRI-based tissue models that can be used in electromagnetic dosimetry applications and attenuation correction in PET/MR.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Crânio / Processamento de Imagem Assistida por Computador / Mapeamento Encefálico / Imageamento por Ressonância Magnética Tipo de estudo: Observational_studies / Qualitative_research Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Crânio / Processamento de Imagem Assistida por Computador / Mapeamento Encefálico / Imageamento por Ressonância Magnética Tipo de estudo: Observational_studies / Qualitative_research Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2016 Tipo de documento: Article