Your browser doesn't support javascript.
loading
The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury.
Joshi, Yashashree; Sória, Marília Grando; Quadrato, Giorgia; Inak, Gizem; Zhou, Luming; Hervera, Arnau; Rathore, Khizr I; Elnaggar, Mohamed; Cucchiarini, Magali; Magali, Cucchiarini; Marine, Jeanne Christophe; Puttagunta, Radhika; Di Giovanni, Simone.
Afiliação
  • Joshi Y; 1 Laboratory for NeuroRegeneration and Repair, Centre for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany 2 Graduate School for Cellular and Molecular Neuroscience, University of Tuebingen, Tuebingen, Germany 3 German Centre for Neurodegenerative
  • Sória MG; 1 Laboratory for NeuroRegeneration and Repair, Centre for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany 2 Graduate School for Cellular and Molecular Neuroscience, University of Tuebingen, Tuebingen, Germany.
  • Quadrato G; 1 Laboratory for NeuroRegeneration and Repair, Centre for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
  • Inak G; 1 Laboratory for NeuroRegeneration and Repair, Centre for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany 2 Graduate School for Cellular and Molecular Neuroscience, University of Tuebingen, Tuebingen, Germany.
  • Zhou L; 1 Laboratory for NeuroRegeneration and Repair, Centre for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany 4 Molecular Neuroregeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.
  • Hervera A; 4 Molecular Neuroregeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.
  • Rathore KI; 1 Laboratory for NeuroRegeneration and Repair, Centre for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
  • Elnaggar M; 1 Laboratory for NeuroRegeneration and Repair, Centre for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany 2 Graduate School for Cellular and Molecular Neuroscience, University of Tuebingen, Tuebingen, Germany.
  • Magali C; 5 Centre of Experimental Orthopaedics, Saarland University Medical Centre, Homburg/Saar, Germany.
  • Marine JC; 6 Laboratory for Molecular Cancer Biology, Department of Molecular and Developmental Genetics, VIB-K.U.Leuven, Leuven, Belgium.
  • Puttagunta R; 1 Laboratory for NeuroRegeneration and Repair, Centre for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
  • Di Giovanni S; 1 Laboratory for NeuroRegeneration and Repair, Centre for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany 4 Molecular Neuroregeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK s.di-giovanni@imperial
Brain ; 138(Pt 7): 1843-62, 2015 Jul.
Article em En | MEDLINE | ID: mdl-25981963
Regeneration of injured central nervous system axons is highly restricted, causing neurological impairment. To date, although the lack of intrinsic regenerative potential is well described, a key regulatory molecular mechanism for the enhancement of both axonal regrowth and functional recovery after central nervous system injury remains elusive. While ubiquitin ligases coordinate neuronal morphogenesis and connectivity during development as well as after axonal injury, their role specifically in axonal regeneration is unknown. Following a bioinformatics network analysis combining ubiquitin ligases with previously defined axonal regenerative proteins, we found a triad composed of the ubiquitin ligases MDM4, MDM2 and the transcription factor p53 (encoded by TP53) as a putative central signalling complex restricting the regeneration program. Indeed, conditional deletion of MDM4 or pharmacological inhibition of MDM2/p53 interaction in the eye and spinal cord promote axonal regeneration and sprouting of the optic nerve after crush and of supraspinal tracts after spinal cord injury. The double conditional deletion of MDM4-p53 as well as MDM2 inhibition in p53-deficient mice blocks this regenerative phenotype, showing its dependence upon p53. Genome-wide gene expression analysis from ex vivo fluorescence-activated cell sorting in MDM4-deficient retinal ganglion cells identifies the downstream target IGF1R, whose activity and expression was found to be required for the regeneration elicited by MDM4 deletion. Importantly, we demonstrate that pharmacological enhancement of the MDM2/p53-IGF1R axis enhances axonal sprouting as well as functional recovery after spinal cord injury. Thus, our results show MDM4-MDM2/p53-IGF1R as an original regulatory mechanism for CNS regeneration and offer novel targets to enhance neurological recovery.media-1vid110.1093/brain/awv125_video_abstractawv125_video_abstract.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismos da Medula Espinal / Transdução de Sinais / Recuperação de Função Fisiológica / Traumatismos do Nervo Óptico / Regeneração Nervosa Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismos da Medula Espinal / Transdução de Sinais / Recuperação de Função Fisiológica / Traumatismos do Nervo Óptico / Regeneração Nervosa Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article