Your browser doesn't support javascript.
loading
Cell Therapy and Tissue Engineering Approaches for Cartilage Repair and/or Regeneration.
Mardones, Rodrigo; Jofré, Claudio M; Minguell, José J.
Afiliação
  • Mardones R; Centro de Traumatología y Ortopedia, Laboratorio de Ingeniería de Tejidos, Clínica Las Condes, Santiago, Chile ; Centro de Terapia Regenerativa Celular, Laboratorio de Ingeniería de Tejidos, Clínica Las Condes, Santiago, Chile.
  • Jofré CM; Centro de Terapia Regenerativa Celular, Laboratorio de Ingeniería de Tejidos, Clínica Las Condes, Santiago, Chile.
  • Minguell JJ; Centro de Terapia Regenerativa Celular, Laboratorio de Ingeniería de Tejidos, Clínica Las Condes, Santiago, Chile.
Int J Stem Cells ; 8(1): 48-53, 2015 May.
Article em En | MEDLINE | ID: mdl-26019754
ABSTRACT
Articular cartilage injuries caused by traumatic, mechanical and/or by progressive degeneration result in pain, swelling, subsequent loss of joint function and finally osteoarthritis. Due to the peculiar structure of the tissue (no blood supply), chondrocytes, the unique cellular phenotype in cartilage, receive their nutrition through diffusion from the synovial fluid and this limits their intrinsic capacity for healing. The first cellular avenue explored for cartilage repair involved the in situ transplantation of isolated chondrocytes. Latterly, an improved alternative for the above reparative strategy involved the infusion of mesenchymal stem cells (MSC), which in addition to a self-renewal capacity exhibit a differentiation potential to chondrocytes, as well as a capability to produce a vast array of growth factors, cytokines and extracellular matrix compounds involved in cartilage development. In addition to the above and foremost reparative options up till now in use, other therapeutic options have been developed, comprising the design of biomaterial substrates (scaffolds) capable of sustaining MSC attachment, proliferation and differentiation. The implantation of these engineered platforms, closely to the site of cartilage damage, may well facilitate the initiation of an 'in situ' cartilage reparation process. In this mini-review, we examined the timely and conceptual development of several cell-based methods, designed to repair/regenerate a damaged cartilage. In addition to the above described cartilage reparative options, other therapeutic alternatives still in progress are portrayed.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2015 Tipo de documento: Article