Evaluation of targeting c-Src by the RGT-containing peptide as a novel antithrombotic strategy.
J Hematol Oncol
; 8: 62, 2015 May 30.
Article
em En
| MEDLINE
| ID: mdl-26025329
BACKGROUND: Interaction of integrin ß3 with c-Src plays critical roles in cellular signaling which is heavily implicated in platelet adhesion and aggregation, as well as in tumor cell proliferation and metastasis or in osteoclastic bone resorption. Selectively blocking integrin αIIbß3 outside-in signaling in platelets has been a focus of attention because of its effective antithrombotic potential together with a sufficient hemostatic capacity. The myristoylated RGT peptide has been shown to achieve this blockade by targeting the association of c-Src with the integrin ß3 tail, but the lack of key information regarding the mechanisms of action prevents this strategy from being further developed into practical antithrombotics. Therefore, in-depth knowledge of the precise mechanisms for RGT peptide in regulating platelet function is needed to establish the basis for a potential antithrombotic therapy by targeting c-Src. METHODS: The reduction-sensitive peptides were applied to rule out the membrane anchorage after cytoplasmic delivery. The c-Src activity was assayed at living cell or at protein levels to assess the direct effect of RGT targeting on c-Src. Thrombus formation under flow in the presence of cytoplasmic RGT peptide was observed by perfusing whole blood through the collagen-coated micro-chamber. RESULTS: The RGT peptide did not depend on the membrane anchorage to inhibit outside-in signaling in platelets. The myr-AC ~ CRGT peptide readily blocked agonist-induced c-Src activation by disrupting the Src/ß3 association and inhibited the RhoA activation and collagen-induced platelet aggregation in addition to the typical outside-in signaling events. The myr-AC ~ CRGT had no direct effect on the kinase activity of c-Src in living cells as evidenced by its inability to dissociate Csk from c-Src or to alter the phosphorylation level of c-Src Y(416) and Y(527), consistent results were also from in vitro kinase assays. Under flow conditions, the myr-AC~ CRGT peptide caused an inhibition of platelet thrombus formation predominantly at high shear rates. CONCLUSIONS: These findings provide novel insights into the molecular mechanisms by which the RGT peptide regulates integrin signaling and platelet function and reinforce the potential of the RGT peptide-induced disruption of Src/ß3 association as a druggable target that would finally enable in vivo and clinical studies using the structure-based small molecular mimetics.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Plaquetas
/
Proteínas Proto-Oncogênicas pp60(c-src)
/
Integrina beta3
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2015
Tipo de documento:
Article