Your browser doesn't support javascript.
loading
Functional Upregulation of α4* Nicotinic Acetylcholine Receptors in VTA GABAergic Neurons Increases Sensitivity to Nicotine Reward.
Ngolab, Jennifer; Liu, Liwang; Zhao-Shea, Rubing; Gao, Guangping; Gardner, Paul D; Tapper, Andrew R.
Afiliação
  • Ngolab J; Brudnick Neuropsychiatric Research Institute, Department of Psychiatry and.
  • Liu L; Brudnick Neuropsychiatric Research Institute, Department of Psychiatry and.
  • Zhao-Shea R; Brudnick Neuropsychiatric Research Institute, Department of Psychiatry and.
  • Gao G; Gene Therapy Center, Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01604.
  • Gardner PD; Brudnick Neuropsychiatric Research Institute, Department of Psychiatry and.
  • Tapper AR; Brudnick Neuropsychiatric Research Institute, Department of Psychiatry and andrew.tapper@umassmed.edu.
J Neurosci ; 35(22): 8570-8, 2015 Jun 03.
Article em En | MEDLINE | ID: mdl-26041923
ABSTRACT
Chronic nicotine exposure increases sensitivity to nicotine reward during a withdrawal period, which may facilitate relapse in abstinent smokers, yet the molecular neuroadaptation(s) that contribute to this phenomenon are unknown. Interestingly, chronic nicotine use induces functional upregulation of nicotinic acetylcholine receptors (nAChRs) in the mesocorticolimbic reward pathway potentially linking upregulation to increased drug sensitivity. In the ventral tegmental area (VTA), functional upregulation of nAChRs containing the α4 subunit (α4* nAChRs) is restricted to GABAergic neurons. To test the hypothesis that increased functional expression of α4* nAChRs in these neurons modulates nicotine reward behaviors, we engineered a Cre recombinase-dependent gene expression system to selectively express α4 nAChR subunits harboring a "gain-of-function" mutation [a leucine mutated to a serine residue at the 9' position (Leu9'Ser)] in VTA GABAergic neurons of adult mice. In mice expressing Leu9'Ser α4 nAChR subunits in VTA GABAergic neurons (Gad2(VTA)Leu9'Ser mice), subreward threshold doses of nicotine were sufficient to selectively activate VTA GABAergic neurons and elicit acute hypolocomotion, with subsequent nicotine exposures eliciting tolerance to this effect, compared to control animals. In the conditioned place preference procedure, nicotine was sufficient to condition a significant place preference in Gad2(VTA)Leu9'Ser mice at low nicotine doses that failed to condition control animals. Together, these data indicate that functional upregulation of α4* nAChRs in VTA GABAergic neurons confers increased sensitivity to nicotine reward and points to nAChR subtypes specifically expressed in GABAergic VTA neurons as molecular targets for smoking cessation therapeutics.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Recompensa / Regulação para Cima / Receptores Nicotínicos / Área Tegmentar Ventral / Agonistas Nicotínicos / Neurônios GABAérgicos / Nicotina Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Recompensa / Regulação para Cima / Receptores Nicotínicos / Área Tegmentar Ventral / Agonistas Nicotínicos / Neurônios GABAérgicos / Nicotina Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Ano de publicação: 2015 Tipo de documento: Article