Your browser doesn't support javascript.
loading
Strong Coupling between Plasmonic Gap Modes and Photonic Lattice Modes in DNA-Assembled Gold Nanocube Arrays.
Lin, Qing-Yuan; Li, Zhongyang; Brown, Keith A; O'Brien, Matthew N; Ross, Michael B; Zhou, Yu; Butun, Serkan; Chen, Peng-Cheng; Schatz, George C; Dravid, Vinayak P; Aydin, Koray; Mirkin, Chad A.
Afiliação
  • Lin QY; †Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, §Department of Electrical Engineering and Computer Science, and ∥Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
  • Li Z; †Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, §Department of Electrical Engineering and Computer Science, and ∥Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
  • Brown KA; †Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, §Department of Electrical Engineering and Computer Science, and ∥Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
  • O'Brien MN; †Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, §Department of Electrical Engineering and Computer Science, and ∥Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
  • Ross MB; †Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, §Department of Electrical Engineering and Computer Science, and ∥Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
  • Zhou Y; †Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, §Department of Electrical Engineering and Computer Science, and ∥Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
  • Butun S; †Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, §Department of Electrical Engineering and Computer Science, and ∥Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
  • Chen PC; †Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, §Department of Electrical Engineering and Computer Science, and ∥Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
  • Schatz GC; †Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, §Department of Electrical Engineering and Computer Science, and ∥Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
  • Dravid VP; †Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, §Department of Electrical Engineering and Computer Science, and ∥Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
  • Aydin K; †Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, §Department of Electrical Engineering and Computer Science, and ∥Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
  • Mirkin CA; †Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, §Department of Electrical Engineering and Computer Science, and ∥Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.
Nano Lett ; 15(7): 4699-703, 2015 Jul 08.
Article em En | MEDLINE | ID: mdl-26046948
ABSTRACT
Control of both photonic and plasmonic coupling in a single optical device represents a challenge due to the distinct length scales that must be manipulated. Here, we show that optical metasurfaces with such control can be constructed using an approach that combines top-down and bottom-up processes, wherein gold nanocubes are assembled into ordered arrays via DNA hybridization events onto a gold film decorated with DNA-binding regions defined using electron beam lithography. This approach enables one to systematically tune three critical architectural parameters (1) anisotropic metal nanoparticle shape and size, (2) the distance between nanoparticles and a metal surface, and (3) the symmetry and spacing of particles. Importantly, these parameters allow for the independent control of two distinct optical modes, a gap mode between the particle and the surface and a lattice mode that originates from cooperative scattering of many particles in an array. Through reflectivity spectroscopy and finite-difference time-domain simulation, we find that these modes can be brought into resonance and coupled strongly. The high degree of synthetic control enables the systematic study of this coupling with respect to geometry, lattice symmetry, and particle shape, which together serve as a compelling example of how nanoparticle-based optics can be useful to realize advanced nanophotonic structures that hold implications for sensing, quantum plasmonics, and tunable absorbers.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA / Nanopartículas Metálicas / Dispositivos Ópticos / Ouro Idioma: En Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA / Nanopartículas Metálicas / Dispositivos Ópticos / Ouro Idioma: En Ano de publicação: 2015 Tipo de documento: Article