Quantitative Analysis of Energy Transfer and Origin of Quenching in Er(3+)/Ho(3+) Codoped Germanosilicate Glasses.
J Phys Chem A
; 119(26): 6823-30, 2015 Jul 02.
Article
em En
| MEDLINE
| ID: mdl-26061719
The energy transfer mechanism between Ho(3+) and Er(3+) ions has been investigated in germanosilicate glass excited by 980 nm laser diode. A rate equation model was developed to demonstrate the energy transfer from Er(3+) to Ho(3+) ions, quantitatively. Energy transfer efficiency from the Er(3+):(4)I13/2 to the Ho(3+):(5)I7 level can reach as high as 75%. Such a high efficiency was attributed to the excellent matching of the host phonon energy with the energy gap between Er(3+):(4)I13/2 and Ho(3+):(5)I7 levels. In addition, the energy transfer microparameter (CDA) from Er(3+):(4)I13/2 to Ho(3+):(5)I7 level was estimated to (4.16 ± 0.03) × 10(-40) cm(6)·s(-1) via the host-assisted spectral overlap function, coinciding with the CDA (2,88 ± 0.04) × 10(-40) cm(6)·s(-1) from decay analysis of the Er(3+):(4)I13/2 level which also indicated hopping migration-assisted energy transfer. Furthermore, the concentration quenching of Ho(3+):(5)I7 â (5)I8 transition was the dipole-dipole interaction in the diffusion-limited regime, and the quenching concentration of Ho(3+) reached 4.13 × 10(20) cm(-3).
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Silicatos
/
Érbio
/
Vidro
/
Hólmio
Idioma:
En
Ano de publicação:
2015
Tipo de documento:
Article